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Background

Radiotherapy forms the backbone of survival-prolonging 
treatment for glioblastoma (GBM), an unfortunately 
incurable primary malignant brain tumor. Despite surgery, 
conventional radiotherapy, chemotherapy, and in some 
circumstances tumor-treating fields, the median survival 
for GBM remains poor at approximately 15–16 months in 
contemporary series (1-3). Radiotherapy typically focuses 
on treatment of the surgical bed, MR-visible enhancing 
and non-enhancing tumor, and a margin of 1–2 cm of 
surrounding non-infiltrative tumor. The addition of 
temozolomide during and after radiotherapy enhances 
the therapeutic efficacy by prolonging time to tumor 
progression and increasing survival (4,5).

Although radiotherapy-temozolomide combination 
has been shown to improve survival, the predominant 
pattern of radiographic failure remains local, within the 

parenchymal brain encompassing residual enhancing tumor 
and/or around the surgical bed and receiving the highest 
radiotherapy dose (i.e., >57 Gy or the 95% isodose line 
of prescribed 60 Gy) (6,7). This may be due in part to 
the hypoxic microenvironment of GBM, which not only 
releases pro-angiogenic factors such as vascular endothelial 
growth factor (VEGF) (8), but also harbors stem cells that 
resist treatment and are putatively responsible for tumor 
regrowth (9). 

Radiotherapy intensification without 
chemotherapy

Intensification of radiotherapy, through concomitant 
escalation of radiotherapy dose and dose-per-fraction, is an 
emerging approach to overcome hypoxia-related treatment 
resistance. Standard radiotherapy currently employs a 
total dose of 60 Gy in 30 fractions in 2-Gy fractions. This 
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is based on historical dose-response analyses in the pre-
temozolomide era. Walker et al. reported on 420 patients 
treated on Brain Tumor Cooperative Group protocols 
and observed significant improvement in median survival 
from 28 to 42 weeks in the patients treated with doses of  
50–60 Gy, compared to lower doses (10). Similarly, a 
Medical Research Council study of 443 patients also showed 
a significant survival advantage (median survival 12 vs.  
9 months) in patients who received 60 Gy compared to 
those who received 45 Gy (11). 

Radiotherapy intensification beyond 60 Gy has not 
demonstrated further survival benefit in prospective trials. 
Importantly, these trials were conducted either without 
chemotherapy or with nitrosurea-based chemotherapy 
and did not employ the current standard approach using 
temozolomide as a radiosensitizer. The Radiation Therapy 
Oncology Group (RTOG) and Eastern Cooperative 
Oncology Group (ECOG) observed no survival benefit with 
a 10-Gy focal boost to 60-Gy whole-brain irradiation (12). 
Intensity-modulated radiotherapy to a dose of 90 Gy for 
34 patients with high-grade gliomas led to median survival 
of 11.7 months and 1- and 2-year survivals of 47.1% and 
12.9%, respectively, comparable to historical controls (13). 

Hyperfractionated or accelerated radiotherapy regimens 
have also been explored as a means to intensify radiotherapy, 
using twice daily, three times daily, and even four times 
daily fractionation. RTOG 83-02 examined dose escalation 
using twice daily fractionation in patients with malignant 
gliomas and observed no survival differences between 
hyperfractionated regimens 64.8, 72.0, 76.8, and 81.6 
Gy given in 1.2-Gy fractions twice daily and accelerated 
hyperfractionated regimens of 48 and 54.4 Gy given in 
1.6 Gy twice-daily fraction in combination with BCNU 
chemotherapy (14). A phase III trial observed no survival 
benefit of hyperfractionated radiotherapy to 72 Gy in 
60 fractions of 1.2 Gy given twice daily compared to 
conventional radiotherapy to 60 Gy in 30 daily fractions (15).

Radiosurgery and brachytherapy have also been explored 
as approaches to radiotherapy intensification and failed to 
show survival benefit in the pre-temozolomide era. These 
negative trials have included the addition of a radiosurgical 
boost to 60-Gy radiotherapy plus adjuvant BCNU (16), 
the addition of a fractionated stereotactic radiotherapy 
boost to 50-Gy radiotherapy for a cumulative dose of 70 or  
78 Gy (17), and the addition of a brachytherapy boost to  
50-Gy radiotherapy (18).

More recently, a systematic review and meta-analysis 
of 22 prospective trials demonstrated progression-

free and overall survival benefits to dose-escalated 
radiotherapy (defined as equivalent dose in 2-Gy fractions)  
>60 Gy versus 60 Gy standard-dose radiotherapy without  
chemotherapy (19). In analysis comparing 108 patients 
across 4 studies treated with dose-escalated radiotherapy 
without chemotherapy versus 1,001 patients across  
6 studies treated with standard-dose radiotherapy without 
chemotherapy, 1-year OS was significantly higher (46.3% 
vs. 23.4%, P=0.02). In analysis comparing 91 patients across 
3 studies treated with dose-escalated radiotherapy versus 
422 patients across 3 studies treated with standard-dose 
radiotherapy, 1-year PFS was significantly higher (17.9% 
vs. 5.3%, P=0.02). Given the limited availability of MGMT 
promoter methylation status on these studies, OS and PFS 
differences could not be assessed. In spite of this limitation, 
this meta-analysis provides evidence in support of the use 
of dose-escalated radiotherapy in GBM patients unable to 
receive chemotherapy. 

Radiotherapy intensification with chemotherapy

In the contemporary era of concurrent and adjuvant 
temozolomide, escalation of both dose and dose-per-
fraction using IMRT was tested in a prospective phase I/II 
study. The maximum tolerated dose with temozolomide was 
75 Gy in 30 fractions (2.5 Gy per fraction). Median survival 
was 20.1 months, suggesting improved efficacy compared to 
other contemporary studies. Interestingly, the probability of 
in-field failure decreased in with increasing dose-escalation. 
These findings paralleled results from prior studies of 
radiotherapy intensification without chemotherapy, where 
patterns of failure could be altered and local control 
improved with radiotherapy dose escalation (20-22). 

Based on the promising results of radiotherapy 
intensification in the setting of concurrent and adjuvant 
temozolomide, NRG Oncology BN001 was launched 
to test the hypothesis that radiotherapy intensification 
with temozolomide for newly diagnosed GBM prolongs 
survival. The trial has used the maximum tolerated dose 
of 75 Gy in 30 fractions, delivered to the surgical bed 
and residual enhancing tumor plus a volumetric margin 
of 5 mm, with differential dose-painting of 50 Gy in 30 
fractions to non-enhancing tumor plus a 2-cm volumetric 
margin, with concomitant and adjuvant temozolomide. The 
primary endpoint was overall survival. As per criteria of the 
preceding phase I/II trial, the trial was limited to patients 
with a surgical cavity of 5 cm or less. 

The trial was designed as two randomized phase II trials 
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running simultaneously. All arms of both cohorts received 
concurrent and adjuvant temozolomide. In the intensity-
modulated radiation therapy (IMRT) cohort, patients were 
randomized to 75 Gy IMRT vs. 60 Gy IMRT. In the proton 
therapy cohort, patients were randomized to 75 Gy proton 
therapy vs. 60 Gy IMRT. The trial was developed using an 
instrumental variable analysis study design, wherein if the 
control arms of each cohort were statistically comparable, 
then the investigational arms of each cohort (75-Gy 
proton therapy versus 75-Gy IMRT) would be compared 
statistically for the primary endpoint. The trial was also 
designed as a signal-seeking study, using an inflated one-
sided alpha of 0.15 for statistical significance to prompt a 
validation phase III study. Given the widespread availability 
of IMRT relative to proton therapy, the IMRT cohort 
completed accrual in July 2018, while the proton therapy 
cohort continues to enroll and is slated to complete accrual 
in early 2022. 

Preliminary results of the IMRT cohort were reported 
at the 2020 Annual Meeting of the American Society for 
Radiation Oncology (ASTRO) (23). From October 2014 
to July 2018, 229 patients were eligible and randomized. 
Median age was 62 years; 58% were MGMT unmethylated; 
75% were RPA class IV. Treatment arms did not differ 
in baseline characteristics or grade ≥3 toxicity. Median 
survival was 18.7 months after 75-Gy IMRT versus  
16.3 months after 60-Gy IMRT. Though the survival 
curves were non-overlapping in favor of 75-Gy IMRT, the 
difference between treatment arms did not reach statistical 
significance for testing in phase III setting (P=0.19 vs. a 
priori P<0.15 for statistical significance). At 30 months, 
30.4% (95% CI: 21.8, 39.1) on 75-Gy IMRT arm, and 
21.6% (95% CI: 12.7, 30.6) on 60-Gy IMRT arm were 
alive. 

Proton therapy for GBM is associated with a significant 
reduction in integral dose, which has been shown to prevent 
radiotherapy-induced circulating lymphopenia (24). Emerging 
data suggest that the circulating lymphocyte compartment is 
influenced by this integral dose and putatively represents a 
biologically relevant normal tissue compartment. In the pre-
temozolomide era, radiotherapy for high-grade glioma have 
demonstrated a significant reduction in CD4 counts over the 
course of treatment. Specifically, after 6 weeks of radiotherapy, 
47% of patients had CD4 counts <300 cells/mm3 and 26% had 
CD4 counts <200 cells/mm3 (25). In a subsequent prospective 
multicenter observational trial of high-grade glioma patients 
treated with standard chemoradiotherapy, 40% of patients 
had CD4 counts <200 cells/mm3 by 2 months after initiating 

therapy (26). Importantly, after adjusting for known 
prognostic factors, patients with CD4 counts <200 cells/mm3  
had significantly inferior median survival as compared 
to those with higher CD4 counts (13.1 vs. 19.7 months, 
P=0.002). Interestingly, the cause of death was attributable 
to early tumor progression, and not to opportunistic 
infections as was the original hypothesis. Thus, these 
findings highlight the putative importance of radiosensitive 
circulating CD4 lymphocytes on tumor control and 
survival, implicating an immunologic mechanism.

Given  ev idence  that  proton  therapy  prevents 
radiotherapy-induced circulating lymphopenia, and that 
circulating lymphopenia impacts survival outcomes in 
GBM patients, accrual to the cohort proton therapy 
cohort of NRG BN001 is encouraged, as proton therapy 
is hypothesized to provide an additional survival benefit 
beyond that potentially provided by radiotherapy 
intensification. Additionally, translational analyses of 
centrally submitted surgical specimens are planned to 
investigate biologic subtypes of GBM that may differentially 
benefit from radiotherapy dose-intensification. 

Another area of  investigation for radiotherapy 
intensification is the use of functional imaging to guide 
the target region for radiotherapy dose-escalation. 
Positron emission tomography (PET) imaging using 
L-3,4-dihydroxy-6-18Ffluoro-phenyl-alanine (18F-DOPA). 
18F-DOPA is an amino acid that biochemically resembles 
natural L-DOPA, a precursor of the neurotransmitters 
dopamine, norepinephrine and epinephrine. Due to 
upregulation of amino acid transport in malignant 
tissues and thereby increased amino acid uptake in brain 
tumors compared to normal brain, 18F-DOPA-PET has 
been observed to be sensitive and specific in identifying 
biologically aggressive and residual occult glioma beyond 
regions of MR-based contrast-enhancement (27). 

In a single-institution phase II trial of 18F-DOPA-PET-
guided radiotherapy dose-escalation (28), a dose-painting 
technique in 30 fractions was used to treat GBM patients to 
51 Gy to the MR-defined surgical cavity, residual contrast 
enhancement and surrounding FLAIR abnormality, 
18F-DOPA-PET-defined regions of lower-density and 
higher-density tumor infiltration, and a 1 cm volumetric 
margin; 60 Gy to the MR-defined surgical cavity and 
residual contrast enhancement, 18F-DOPA-PET-defined 
regions of higher-density tumor infiltration, and a 1cm 
volumetric margin; and, 76 Gy to the MR-defined surgical 
cavity and residual contrast enhancement and 18F-DOPA-
PET-defined higher-density tumor infiltration. Treatment 
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was delivered with concomitant and adjuvant temozolomide 
for 6 cycles. 18F-DOPA-PET-defined regions of lower- 
versus higher-density tumor infiltration were based on 
computations of ratios of SUV-max of the tumor to SUV-
mean of the contralateral brain tissue (T/N). Regions of 
T/N of 1.2 to 2.0 were defined as lower-density tumor 
infiltration; regions of T/N of >2.0 were defined as higher-
density tumor infiltration. 

On this trial, 75 evaluable patients were enrolled and 
treated with 18F-DOPA-PET-guided radiotherapy dose-
intensification. Median PFS was longer than historical 
controls (8.75 vs. 6.6 months; P=0.017), but the OS 
difference though numerically longer was not statistically 
significant (16.0 vs. 13.5 months, P=0.13). Amongst MGMT 
promoter methylated patients, 18F-DOPA-PET-guided 
radiotherapy dose-intensification was associated with longer 
OS compared to historical controls (35.5 vs. 23.3 months, 
P=0.049). Amongst MGMT promoter unmethylated 
patients, the OS difference though numerically longer was 
not statistically significant (16.0 vs. 13.5 months, P=0.13). 
Following 18F-DOPA-PET-guided radiotherapy dose-
intensification, 10 patients developed grade 3 CNS necrosis. 
Of 8 patients treated with bevacizumab for grade 3 CNS 
necrosis, 7 patients developed improvement in neurologic 
symptoms to grade 2 or less necrosis. 

The primary endpoint on this single-arm phase II trial 
was the proportion of MGMT promoter unmethylated 
patients who were free of progression or death by 6 months 
(PFS6). Following 18F-DOPA-PET-guided radiotherapy 
dose-intensification for MGMT promoter unmethylated 
patients, 31 of 39 patients (79.5%, 95% CI: 63.1–90.1%) 
were alive and free of progression, which was significantly 
higher than the PFS6 rate of 54.3% (95% CI: 44.5–66.3%) 
from the historical control. The study team concluded 
that meeting this PFS6 threshold permitted consideration 
of further testing of 18F-DOPA-PET-guided radiotherapy 
dose-intensification for MGMT promoter unmethylated 
patients, even though an OS difference was not observed in 
this subgroup.

Conclusions

Given the importance of increasing radiotherapy dose to 
60 Gy in delaying progression and prolonging survival in 
GBM, radiotherapy intensification beyond standard 60 Gy 
is an ongoing and critical area of investigation. In patients 
not eligible to receive radio-sensitizing chemotherapy, a 
recently published meta-analysis supports an overall survival 

and progression-free survival benefit to radiotherapy 
intensification in excess of standard equivalent dose in 2-Gy 
fractions of 60 Gy. In patients eligible to receive radio-
sensitizing chemotherapy, a recently presented randomized 
phase II trial observed a numerical but not statistically 
significant survival benefit following IMRT dose-
intensification. Opportunities to enhance survival further 
include the use of proton therapy to minimize effect of 
integral dose on circulating lymphopenia and/or the use of 
functional 18F-DOPA-PET to better target high-risk tumor 
regions with radiotherapy intensification.
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