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Abstract: Management of solid tumors involving the skull base are primarily managed with surgery and 
radiation, though proximity to important vascular and neuroanatomic structures often limit the extent 
of resection and permissible radiation dose. Meningiomas are the most common primary brain tumor in 
adults, and although the majority of skull base meningiomas are low-grade, their location in proximity to 
critical anatomical structures precludes aggressive surgical resection, and larger tumors are often resistant 
to radiation treatment. In patients with clinically aggressive, unresectable meningiomas, several molecular 
biomarkers of angiogenesis, as well as genetic mutations (SMO, AKT1, PIK3CA, KLF4, POLR2, SMARCE1, 
and TRAF7), have been shown to play a crucial role in the pathophysiology of these tumors. Pituitary 
adenomas are commonly slow growing tumors that are amenable to surgical resection, but tumors with 
higher Ki67 proliferative indices are associated with an increased risk of relapse and resistance to standard 
therapies. Chemotherapeutic agents and checkpoint inhibitors have been trialed, albeit with limited success, 
to treat these aggressive pituitary adenomas. Craniopharyngiomas are categorized as adamantinomatous 
and papillary subtypes, each with unique molecular mechanisms that drive pathogenesis of these tumors, 
and have introduced the possibility that targeted therapies may be developed for improved neurologic and 
endocrinological outcomes. Skull base tumors that exhibit recurrence despite surgical resection and radiation 
treatment pose a unique challenge, and systemic agents offer a non-invasive option of treating tumors that 
are refractory to conventional approaches. Recent insights into the molecular aberrations that elucidate 
the pathophysiology of these difficult-to-treat tumors have provided potential therapeutic targets for drug 
delivery. In this review, the authors discuss promising therapies and current knowledge gaps needed for the 
development of effective targeted agents for meningioma, pituitary adenoma, and craniopharyngioma.
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Introduction

Tumors of the skull base region are frequently slow-
growing and benign, though intervention is often pursued 
when symptoms occur. These can be challenging to manage 
and often require a multidisciplinary approach to optimize 
outcome and quality of care. Surgery is central to treatment; 
however, complete resection may be precluded by nearby 
critical vasculature and neuroanatomic structures such as 
cranial nerves and, in time, the residual tumor may grow. 
Radiation is beneficial and frequently used in unresectable 
or residual tumors, but its use is also limited in multiply 
recurrent tumors.

Systemic agents such as chemotherapy have been explored 
in the past and generally have been ineffective, though 
improved knowledge of tumor biology has led to promising 
developments in systemic options. In this review, we 
discuss the current molecular and genetic understanding of 
meningiomas, pituitary adenomas, and craniopharyngiomas 
as it relates to the development of targeted therapy. We 
present the following article in accordance with the 
NARRATIVE REVIEW reporting checklist (available at 
http://dx.doi.org/10.21037/cco-20-168).

Methods

A literature search of PubMed was performed to identify 
publications—including basic science research, clinical 
studies, and case reports—pertaining to skull base 
meningiomas, pituitary adenomas, and craniopharyngiomas 
that are resistant to standard surgical and radiation therapy. 
No publication limits were applied, and no inclusion or 
exclusion criteria were implemented for the literature 
search. The authors provide a narrative summary of the 
findings and implications of these studies, and how they 
pertain to improving the clinical care of our own patients 
with these pathologies. 

Meningiomas

Meningiomas are the most common type of primary brain 
tumors in adults (1). The tumors originate from progenitor 
cells in the arachnoid layer of the meninges that envelop 
the brain and spinal cord and their clinical presentation is 
diverse: 30% present with seizures due to mass effect along 
the cerebral convexity or parasagittal region, and an equal 
percentage may present with symptoms such as impaired 
hearing, loss of smell, or visual changes from encroachment 

of the skull base (2). Meningioma behavior can be predicted 
partly by histological grade (3-5). The current World 
Health Organization (WHO) defines three grades which 
correspond to recurrence risk based on features including 
nuclear atypia, mitotic activity, invasion of adjacent 
structures, and presence of necrosis (6). Furthermore, each 
grade is subdivided into a number of subtypes, some of 
which have a predilection for the skull base. Approximately 
80% of meningiomas are classified as benign (grade I) with 
a low rate of recurrence (7–20%) (6-8). The remainder are 
classified as either atypical (grade II) or anaplastic (grade 
III) and are associated with significantly shorter recurrence-
free intervals and higher mortality rates (40–70%) (9-12).

Surgical intervention is often the first step in the 
management of large or symptomatic tumors. Gross total 
resection (GTR) is associated with better local control and 
progression-free survival compared to subtotal resection 
(STR), independent of grade (13,14). However, complete 
removal is not always feasible due to a tumor’s proximity 
to critical vessels or eloquent brain structures, which is 
commonly the case in the skull base region. In selected 
patients, particularly those with clinically aggressive, 
unresectable meningiomas, radiation can be employed in 
either adjuvant or primary settings in hopes of improving 
local control over observation alone. Both fractionated 
external beam radiation (EBRT) and stereotactic radiation 
(SRS) have been used, and the choice of delivery depends 
on the size of the target and tumor grade. SRS is a widely 
accepted technique for small grade I or II lesions, while 
EBRT is recommended for grade III meningiomas which 
require larger doses (50–60 Gy) to achieve local control  
(15-17). Yet a small subset of these patients remains 
refractory to standard intervention; thus, numerous 
systemic agents have been explored, including hormone 
receptor inhibitors, somatostatin analogs, and conventional 
chemotherapy, with none demonstrating reproducible 
benefit (18-24). As molecular and genomic techniques 
advance, so does our understanding of tumor biology and 
potential targets for therapeutic intervention (25,26). 

Aberrations in cell signaling pathways can initiate 
downstream effects that contribute to the development 
of meningiomas. Clarifying which growth factors and 
downstream signaling pathways are critical to the 
pathogenesis can be challenging and continues to evolve. 
Vascular endothelial growth factor (VEGF) and platelet-
derived growth factor (PDGF) have been implicated in 
meningioma growth and are potential therapeutic targets.

Meningiomas are highly vascularized and express 

http://dx.doi.org/10.21037/cco-20-168


Chinese Clinical Oncology, Vol 9, No 6 December 2020

© Chinese Clinical Oncology. All rights reserved.   Chin Clin Oncol 2020;9(6):75 | http://dx.doi.org/10.21037/cco-20-168

Page 3 of 16

angiogenic factors including VEGF. Meningioma extracts 
have been shown to induce endothelial chemotaxis 
and capillary-like tube formation in vitro, and positive 
correlation between VEGF content and meningioma 
grade has been demonstrated though not with vascularity 
or invasiveness (27-29). VEGF is also involved in the 
development of peritumoral edema, which is one cause 
of morbidity in high grade meningiomas (30). Antibodies 
against VEGF may be effective in controlling symptomatic 
edema and tumor growth. In one retrospective study, 
bevacizumab (a humanized monoclonal antibody against 
VEGF-A) was most effective in slowing tumor growth 
and reducing peritumoral edema when compared to 
other systemic therapies such as cytotoxic chemotherapy, 
somatostatin analogues, and tyrosine kinase inhibitors (31).  
A phase 2 single-arm study evaluating the effect of 
bevacizumab in combination with everolimus, an inhibitor 
of mammalian target of rapamycin (mTOR), in refractory, 
progressive intracranial meningioma demonstrated 
favorable results (Figure 1) (32). Though the study was 
terminated early due to slow accrual, 88% [15/17] of the 
patients who received study treatment had stable disease; 
six of these 15 patients had stable disease beyond a year. 
Median progression-free survival (mPFS) was higher in 

patients with grade II and III meningiomas (22 months) 
compared to grade I (17.5 months). The treatment was 
fairly well tolerated, as grade 3 and higher toxicities were 
uncommon. However, the small sample size was small and 
the results require confirmation with larger trials. Results of 
a prospective phase 2 trial of single-agent bevacizumab in 
patients with recurrent or progressive meningiomas closed 
to accrual are forthcoming (NCT01125046).

There is also evidence suggesting the importance of 
PDGF in meningioma cell growth and provide rationale 
for testing PDGF inhibitors in patients with progressive or 
recurrent meningiomas (33-36). The therapeutic potential 
of imatinib mesylate, a PDGF receptor (PDGFR) inhibitor, 
was evaluated in a phase 2 study conducted by the North 
American Brain Tumor Consortium (NABTC 01-08).  
The oral agent was generally well tolerated, though 
the efficacy data were disappointing. Of the 19 patients 
evaluable for response, 10 patients progressed at the first 
scan and 9 had stable disease (37). In another phase 2 study, 
the combination of imatinib and hydroxyurea was modest 
at best in that only 30% [4/13] of patients with grade II 
or III meningiomas achieved stable disease longer than 
6 months (38). Thus, there is increasing attention to the 
development of novel and multi-targeted agents. Sunitinib 

Figure 1 A 57-year-old man with multiply recurrent WHO grade II meningioma who had undergone three resections and three courses of 
radiation to multiple tumor sites since initial diagnosis in 2013. (A) Surveillance MRI one day after resection of a left temporal recurrence. 
(B) Baseline brain MRI prior to initiation of bevacizumab (10 mg/kg intravenously every 14 days) and everolimus (10 mg orally daily). 
Note interval growth of left cerebellopontine meningioma (arrow). (C) Surveillance scan after one year on combination therapy. The 
cerebellopontine meningioma has decreased somewhat in size, and no new tumors had developed in the interim.
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is a small molecule multi-targeted receptor tyrosine kinase 
(RTK) inhibitor that targets VEGF receptor (VEGFR) 
and platelet-derived growth factor receptor (PDGFR), and 
appears to be active even in heavily pre-treated patients with 
high-grade meningioma; however, toxicity is a concern. 
In a phase 2 trial, 42% were alive and without disease 
progression at 6 months (PFS-6), though 60% experienced 
a severe adverse event (39). Vatalanib, another multi-
targeted RTK inhibitor, demonstrated a PFS-6 of 54.4% 
for grade II and III meningiomas combined, though since 
the study was powered for grade I meningiomas it is unclear 
whether the phase 2 trial was positive and remains a major 
study limitation (40).

In contrast  to the amount of  work focused on 
molecular targets, efforts to understand genomic drivers 
of meningioma growth have increased. The most frequent 
genetic alteration in meningioma tumorigenesis involve 
mutations or loss of heterozygosity of the tumor suppressor 
gene NF2, which encodes the protein merlin and is located 
on chromosome 22. Individuals affected by germline 
mutations of NF2 develop neurofibromatosis type 2 
(NF2) and are predisposed to developing meningiomas 
among other benign tumors such as schwannomas and 
ependymomas. Although sporadic meningiomas are by far 
more common, they too are often driven by this mutation, 
which is associated with fibrous or transitional (WHO 
grade I) and are more frequently found along the cerebral 
convexities than skull base (41). Merlin is involved in key 
signaling pathways such as mTOR that regulate cell shape, 
growth, and adhesion. In merlin-deficient meningioma 
cells, cell proliferation and survival are increased as 
a consequence of deregulated downstream effects of 
mammalian target of rapamycin complex 2 (mTORC1) 
and mTORC2 (42,43). In pre-clinical studies, mTORC1 
inhibitors such as everolimus and temsirolimus, and the dual 
mTORC1 and mTORC2 inhibitor vistusertib (AZD2014) 
demonstrate promising activity against the growth of 
meningioma cells and have warranted further study in 
humans. In a phase II trial, the combination of bevacizumab 
(10 mg/kg IV every 14 days) and everolimus (10 mg 
PO daily) produced stable disease (SD) in 15/17 (88%) 
of patients; 6 patients had SD for over 12 months (32).  
The efficacy of vistusertib in patients with recurrent, 
progressive, or symptomatic meningiomas is currently 
under investigation in two phase II trials (NCT03071874, 
NCT02831257). In the single-center, open-label study 
of patients with NF2 and progressive or symptomatic 
meningiomas, 18 patients received vistusertib 125 mg BID 

for two consecutive days each week. Radiographic response, 
defined as a 20% decrease from baseline, was seen in 5–10% 
of schwannomas and meningiomas, though 17% of target 
meningiomas progressed. Furthermore, seven patients 
(39%) elected to discontinue treatment due to intolerable 
side effects including fatigue, anorexia, nausea, vomiting, 
rash, and mucositis (Plotkin S, 2018, unpublished data). 
The relationship between tumor regression and activation 
of TORC1/2 pathways has yet to be clarified. 

Next-generation sequencing has made it possible to 
identify several recurrent mutations in genes other than 
NF2, including SMO, AKT1, PIK3CA, KLF4, POLR2, 
SMARCE1, and TRAF7, which are mutually exclusive 
with NF2. Meningiomas harboring these mutations also 
demonstrate mutant-specific locations in the skull base and 
histological subtypes (44-49). The majority of SMO, AKT1, 
and PIK3CA-mutant meningiomas occur in the anterior 
skull base and are strongly associated with the grade I 
meningothelial subtype (50). Smoothened (Smo), which 
is encoded by SMO, is a transmembrane protein integral 
to the Hedgehog (Hh) signaling pathway and plays a key 
role in embryogenesis. Inhibition of Smo by the small-
molecule drug vismodegib is currently under investigation 
in combination with a novel FAK inhibitor GSK2256098 
(NCT02523014).

AKT1  encodes  the  enzyme RAS-a lpha  ser ine/
threonine-protein kinase and is activated through the 
phosphatidylinositol-3 kinase (PI3K)/Akt/mTOR pathway 
to suppress apoptosis. Grade I meningiomas which 
harbor activating mutations of AKT E17K are characterized 
by shorter time to recurrence compared to AKT1 wild-
type meningiomas (51). A multicohort basket study of 
patients with AKT1-mutant solid tumors demonstrated 
that treatment with the pan-Akt inhibitor AZD5363 is safe 
and effective (52). Although patients with meningiomas 
were not included in this study, Weller et al. reported an 
encouraging case in which a patient with multiply recurrent, 
meningothelial meningioma metastatic to the lung achieved 
stable disease of multiple tumor sites after 17 months of 
salvage AZD5363 (given 480 mg twice daily in a four days 
on/three days off schedule). Further exploration of targeted 
therapy in this subgroup of meningiomas is warranted (53).

Approximately 7% of NF2 wild-type meningiomas 
involve PIK3CA, which is mutually exclusive with SMO and 
AKT1, and approximately 25% harbor mutations in tumor 
necrosis factor receptor-associated factor 7 (TRAF7), which 
is involved in ubiquitination and can co-occur with AKT1 
or Krüppel-like factor 4 (KLF4) gene (48,54). Both TRAF7 
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and KLF4 occur in secretory meningioma (WHO grade 
I) and tend to be located in the petroclival or midline skull 
base. Currently the tumorigenic roles of TRAF7 or KLF4 
are unclear, and warrant further study before effective 
targeted agents can be developed. 

In contrast to grade I meningiomas, grade II and III 
meningiomas exhibit fewer somatic targetable mutations 
such as SMO, AKT1, or PIK3CA. Instead, higher grade 
meningiomas are more likely to demonstrate high mutational 
burden, high-frequency microsatellite instability (MSI-H), 
and mismatch repair (MMR) deficiency from copy number 
alterations. Compared to specific driver alterations, these 
are more challenging to target selectively and may respond 
more favorably to a broader approach. The investigation 
of immunotherapy such as programmed death-1 receptor 
(PD-1) blockade is supported by a number of observations 
of high-grade meningiomas: a number of mutations are 
predicted to be immunogenic, expression of PD-1 and its 
ligand (PD-L1) is increased, and the microenvironment 
of meningiomas contain a selected, antigen-experienced 
effector T-cell population enriched by those expressing 
markers of an exhausted phenotype (44,55-57). Several 
phase II clinical trials are actively recruiting to assess the 
efficacy of checkpoint inhibitors such as pembrolizumab, 
nivolumab, and ipilimumab in recurrent or residual high-
grade meningiomas (NCT02648997, NCT03279692, 
NCT03604978, NCT03173950).

While surgery and radiation remain central to the initial 
management of enlarging, symptomatic meningiomas, 
improved understanding of the underlying tumor biology 
has refined the options for systemic therapy. The agent 
of choice will likely depend on molecular and genetic 
profiling, as the response of high-grade meningiomas to 
highly selective agents is not expected to be as favorable as 
a subset of non-NF2-mutant WHO grade I meningiomas 
might. Regardless, early data are promising and give hope 
to controlling the disease in patients who have exhausted all 
other options. 

Pituitary adenomas (PA)

PA account for approximately 10–20% of primary 
intracranial tumors and may cause clinical symptoms 
either due to hormonal hypersecretion or compression of 
surrounding structures including the optic nerves, chiasm, 
and cavernous sinuses. The majority of these tumors are 
benign and slow growing and are highly treatable with 
standard therapies including surgical resection and adjuvant 

radiation therapy. While surgical resection via either a 
transsphenoidal or transcranial route continues to be the 
mainstay of treatment for most symptomatic pituitary 
adenomas, the extent of resection is highly dependent on 
a number of factors including tumor size, consistency, and 
invasion into the parasellar and suprasellar areas. Following 
subtotal resection, 50–60% of adenomas will continue to 
progress and even after apparent gross total resection, tumor 
recurrence may occur in up to 30% of cases with long-
term follow-up (58-62). Adjuvant radiation therapy is often 
used for the treatment of residual and recurrent pituitary 
adenomas and is typically delivered using stereotactic 
radiosurgery (SRS), conventional conformal radiotherapy, 
or fractionated stereotactic radiotherapy (FSRT). The goals 
of radiation therapy are typically to achieve tumor control 
for non-functioning adenomas (NFPA) and tumor control 
with endocrine remission for hormone-secreting functional 
adenomas. SRS is the most common modality used to treat 
recurrent pituitary adenomas with tumor control rates of 
94–100% at 5 years and 76–87% at 10 years of follow-up 
for NFPA. SRS is typically delivered in a single session with 
a marginal dose of 12–18 Gy. Post-radiation neurological 
deficits and hypopituitarism following SRS may result in 
up to 7% and 39% of patients, respectively (63). Additional 
potential complications of radiation therapy include 
symptomatic radiation necrosis, secondary neoplasms, and 
radiation-induced vasculopathy. Radiation therapy also 
plays an important role in inducing hormonal remission for 
recurrent functional adenomas resistant to medical therapies 
and not amenable to further surgery. Endocrine remission 
rates for ACTH-secreting adenomas with SRS range from 
28–70% with higher radiation doses necessary to induce 
remission compared to those necessary for tumor control 
with NFPA.

A small subset of pituitary tumors is classified as 
aggressive pituitary adenomas (APA) based on their clinical 
presentation and resistance to standard surgical, radiation, 
and medical therapies (64). A clear definition for APA 
remains controversial, however, the most recent 4th edition 
of the WHO Classification of Tumors of the Pituitary Gland 
(2017) recognizes the importance of increased mitotic count, 
high Ki67 proliferative index (>3%), and tumor invasion 
as pathologic markers of clinically aggressive adenomas 
with an increased risk of relapse and resistance to standard 
therapies (Figure 2) (65,66). Additionally, several subtypes 
of pituitary neuroendocrine tumors with a high probability 
of recurrence have been designated including silent 
corticotroph adenomas, sparsely granulated somatotroph 
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adenomas, lactotroph adenomas in med, Crooke’s cell 
adenoma, and plurihormonal Pit-1-positive adenomas. This 
new pathologic classification should enable more accurate 
tumor subtyping and improved prediction of aggressive 
clinical behavior to better assess and guide our therapies. 
The 2017 WHO guidelines continue to define pituitary 
carcinomas by the presence of non-contiguous craniospinal 
or systemic metastases as pituitary carcinomas and adenomas 
are histologically indistinguishable (Figure 3). Fortunately, 
pituitary carcinomas remain rare, accounting for only 0.2% 
of pituitary tumors, but are associated with 1-year mortality 
rates of up to 66% (67). In a 2016 European Society of 
Endocrinology (ESE) survey of treatment of aggressive 
pituitary tumors, the mortality rate for APA nearly 
approaches that of pituitary carcinomas, demonstrating the 
need for improved chemotherapy and targeted molecular 
therapies for these challenging tumors (68,69).

Recently, significant advances have been made in 
understanding the genetic landscape of pituitary adenoma 
tumorigenesis. The primary pathomechanism of pituitary 
adenomas appears to involve alterations in cell-cycle 
regulation and growth factor signaling due to epigenetic 
changes. Somatic and germline mutations occur more 
rarely with growth-hormone and ACTH-secreting 
adenomas carrying somatic mutations in the GNAS and 
USP8 genes, respectively (70). Mutations in USP48 and 
BRAF have also been identified in USP8-negative Cushing’s 

disease patients (71). More rarely, germline mutations 
occur in association with familial tumor syndromes 
including multiple endocrine neoplasia type 1 (MEN1) 
and type 4 (MEN4) syndromes, Carney complex, and 
McCune-Albright syndrome (70). While the identification 
of germline and somatic genetic defects has contributed to 
our understanding of PA pathogenesis, the exact molecular 
mechanisms leading to the majority of PA remains to be 
fully elucidated and the distinction of these molecular 
subgroups has remained of limited clinical relevance in 
terms of treatment. 

Given the complex genomic landscape of PA, a wide 
variety of therapies have been tried for aggressive pituitary 
adenomas and carcinomas, mostly with poor results. To 
date, the most commonly utilized therapies have been 
alkylating chemotherapeutics previously approved for other 
central nervous system malignancies. In 2006, a series of 
case reports described regression of aggressive pituitary 
adenomas following administration of temozolomide 
(TMZ) monotherapy (72,73). More recently, McCormack 
and colleagues reported the results of a European Society 
of Endocrinology (ESE) survey on the treatment of APA 
and PC (69). The survey included 157 patients treated with 
TMZ as first-line chemotherapy reported that overall 37% 
of patients demonstrated a radiographic response including 
6% with complete regression. The majority of these 
patients were administered TMZ according to the standard 

Figure 2 Hormone-secreting pituitary macroadenoma, refractory to multi-modality therapy. (A) Coronal MRI with contrast demonstrating 
a prolactin-secreting pituitary macroadenoma with right cavernous sinus invasion (*). (B) Despite dopamine agonist therapy, fractionated 
stereotactic radiotherapy and transsphenoidal surgical resection, the macroadenoma continued to progress encasing the right carotid artery 
(**) and compressing the optic chiasm (arrow) resulting in visual loss.
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*
**
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“Stupp” protocol used for glioblastoma (TMZ 75 mg/m2  
daily, followed by TMZ 150–200 mg/m2 daily for five days 
every 28 days). The median duration of treatment was  
9 months and the maximal radiographic response occurred 
within 3 months in 23% of patients and within 6 months 
in 59% of patients (74). Hormonally functioning tumors 
responded better to TMZ than NFPA, and similar to the 
responses seen with glioblastoma, lower activity levels of the 
DNA repair enzyme 0(6)-methylguanine methyltransferase 
(MGMT) were associated with improved cl inical  
response (69). On the basis of these results, the ESE 
guidelines for the management of APA and PC currently 
recommend use of TMZ monotherapy as first-line 
chemotherapy for these tumors following documented 
tumor  growth  (64 ) .  The  ESE recommends  tha t 
radiographic response be evaluated after three cycles of 
TMZ and therapy continued for at least six months for 

tumors demonstrating clinical response or stability. Little 
data is available on the long-term treatment of APA and PC, 
but TMZ monotherapy is often continued until progression 
is observed.

There is limited data to guide second-line therapies 
for APA and PC that continue to progress following 
TMZ administration. Preclinical and clinical studies have 
identified several pituitary adenoma-intrinsic targets for 
therapy including growth factors and their receptors and 
intracellular signaling pathways. Inhibition of VEGF has 
been reported in 13 cases, with 9 cases showing apparent 
clinical response to either anti-VEGF monotherapy or 
combination therapy (TMZ, pasireotide, radiotherapy) (68).  
Markers of  tumor angiogenesis ,  including VEGF 
expression, have been observed in APA compared to 
standard pituitary adenomas. Ortiz et al. described a 
patient with a silent corticotroph pituitary carcinoma who 

Figure 3 A 63-year-old man presented with worsening diabetes mellitus and visual loss. Laboratory evaluation revealed an elevated growth 
hormone (GH) of 53 ng/mL (<10.0) and a pituitary macroadenoma (arrow) with suprasellar extension on sagittal (A) and axial (B) MRI. 
He underwent a right craniotomy for near-gross total resection of the mass followed by stereotactic radiosurgery with his postoperative 
GH decreased to 3.7 ng/mL. Three years after treatment, laboratory and imaging surveillance revealed his GH increased to 134 and MRI 
showed no sellar recurrence (C) but non-contiguous growth of his pituitary tumor (D) along the right sphenoid wing (*) consistent with 
pituitary carcinoma. 

A

C

B

D



Martinez et al. Targeted therapy in skull base tumors

© Chinese Clinical Oncology. All rights reserved.   Chin Clin Oncol 2020;9(6):75 | http://dx.doi.org/10.21037/cco-20-168

Page 8 of 16

had progressed despite TMZ administration treated with 
bevacizumab. After 26 months of bevacizumab treatment, 
stability of disease was observed on serial MRI and PET 
scan imaging (75). Wang et al. reported a >90% tumor 
size reduction of a multiply recurrent aggressive growth 
hormone-producing adenoma following treatment with 
TMZ and the VEGFR-2 inhibitor apatinib (76). After two 
years of follow-up, they reported sustained biochemical 
growth hormone remission and no radiographic tumor 
recurrence. The relative contribution of apatinib to the 
clinical response remains uncertain, however. Based on 
these limited data, VEGF-targeted therapies should be 
considered in patients with progressive disease. The clinical 
relevance of increased VEGF-expression as a biomarker 
to predict response deserves further evaluation. The Raf/
MEK/ERK and PI3K/Akt/mTOR pathways have also 
been shown to be upregulated in pituitary tumors (64,77). 
Inhibitors of these cascades demonstrate anti-tumor effects 
in vitro and in murine models of APA, however, limited 
success has been observed clinically with these agents. 
Everolimus, an oral mTOR inhibitor, has been employed as 
second- or third-line monotherapy in five patients without 
success (64,78). The oncogenic V600E BRAF mutation has 
been detected in 16.5% of corticotroph adenomas but not 
in other types of pituitary adenomas. Treatment of murine 
corticotroph pituitary adenomas with the BRAF inhibitor 
vemurafenib reduced ACTH expression, suggesting a role 
for this inhibitor in Cushing’s disease patients with BRAF-
mutated tumors (68,71).

An additional emerging therapy for treatment refractory 
pituitary adenomas is the use of immunotherapy. A recent 
study by Wang et al. reported that PD-LI, a key predictive 
marker of immunotherapy response, is frequently expressed 
in functional pituitary adenomas with higher Ki-67  
index (79). PD-L1 expression was detected in 59% of 
functional tumors compared to 34% of NFPA. Similarly, 
Mei et al. showed significantly higher levels of PD-
L1 expression and tumor infiltrating lymphocytes in 
functional tumors, further raising the possibility that 
checkpoint blockade immunotherapy may be effective in 
cases of functional adenomas refractory to conventional 
management (80). Currently, only a single case has been 
reported of a patient with a pituitary carcinoma, previously 
treated with TMZ and capecitabine, responding to 
treatment with a combination of the checkpoint inhibitors 
monoclonal antibodies nivolumab (anti-PD-1) and 
ipilimumab (anti-CTLA4). Following five cycles of therapy, 

the intracranial tumor volume decreased by 59% and the 
primary liver metastasis decreased by 92% (81). Plasma 
ACTH levels decreased from 45,550 to 66 pg/mL. At 
six months of surveillance, no progression was observed. 
Importantly, clinical experience with immunotherapy 
suggests that normal pituitary cells are susceptible to 
checkpoint inhibitors with hypophysitis reported as a 
common side effect of therapy in 4–15% of patients, 
potentially related to ectopic expression of CTLA-4 on 
pituitary endocrine (82-84). While this expression may 
potentiate the anti-tumor immune response of checkpoint 
inhibitors, patients will need to be closely monitored for 
development of hypopituitarism.

In conclusion, following failure of conventional 
treatments including surgical resection by an expert 
neurosurgeon and maximal radiation therapy for aggressive 
pituitary adenomas and pituitary carcinomas, TMZ is 
currently recommended as first-line therapy. Second- 
and third-line options remain uncertain with limited data 
available to guide therapy, however, treatment with VEGF 
inhibitors and immune checkpoint inhibitors appear to 
hold promise and are currently being investigated in several 
clinical trials.

Craniopharyngiomas

Craniopharyngiomas are benign (WHO grade I) tumors 
that occur in the sellar and suprasellar region, arising from 
embryonic epithelium derived from Rathke’s pouch (85). 
Craniopharyngiomas are relatively rare tumors with an 
incidence of 0.13 per 100,000-person years and account for 
3% of all intracranial neoplasms (1). Craniopharyngiomas 
reliably occur in a bi-modal age distribution, most often 
presenting in pediatric patients between the age of 5–14, 
with a second peak occurring in adults in their sixth to 
seventh decade of life (86). There are two subtypes of 
craniopharyngiomas, each with a predilection to occur 
in different patient populations: the adamantinomatous 
subtype most frequently affects pediatric patients, whereas 
papillary subtype predominantly occurs in adults (87). 
Radiographically, adamantinomatous craniopharyngiomas 
contain prominent cystic components and frequently 
exhibit calcifications, whereas the papillary subtype is more 
solid and rarely contains calcifications (88). Given their 
location in the suprasellar space, craniopharyngiomas may 
exert mass effect on nearby structures, and consequently 
can present with vision changes from compression of the 
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optic apparatus, hormonal abnormalities secondary to 
hypothalamic-pituitary dysfunction, or headaches due to 
obstructive hydrocephalus (89). 

Craniopharyngiomas are slow-growing tumors and 
diagnosis is often delayed until patients begin exhibiting 
symptoms due to compression of adjacent structures. The 
most common clinical symptoms at the time of diagnosis 
include headaches, visual impairment, and endocrine 
dysfunction (90). Pediatric patients are frequently 
found to have endocrinopathies at the time of diagnosis, 
most commonly growth hormone and gonadotrophin  
deficiency (90). Adults, on the other hand, more often 
present with headaches and visual field defects (91). 

The treatment of craniopharyngiomas in both pediatric 
and adult patients typically involves surgical resection 
followed by adjuvant radiation therapy. Surgical resection 
serves to reduce tumor mass effect on the optic apparatus 
and brainstem as well as restore cerebrospinal flow to relieve 
hydrocephalus. Resection also provides tissue diagnosis for 
histopathology and molecular genotyping and decreases the 
overall tumor volume for subsequent radiation treatment 
if necessary (92). Surgical resection can be performed via a 
transcranial or endoscopic endonasal approach (93), both 
of which have shown to confer similar overall survival 
when combined with adjuvant radiation therapy (94-96). 
Radiation treatment has been shown to be an effective 
adjuvant treatment following subtotal tumor resection or at 
the time of tumor recurrence (97-99). 

Surgical resection and radiation therapy provide 
excellent tumor control, with overall 10-year survival 
rates reported between 80–90%, albeit local recurrence 
is common (100,101). Even amongst patients with long-
term progression free survival, there is a high prevalence 
of neurological and psychological morbidity. Patients 
with craniopharyngioma diagnosed in childhood, and 
their caregivers, report inferior quality of life metrics, 
and harbor long-term psychosocial impairment (102). 
Furthermore, pituitary insufficiency is present in a 
large portion of patients, and up to 75% of patients are 
rendered with panhypopituitarism, predisposing them to 
chronic morbidity from obesity, hyperlipidemia, diabetes, 
and cardiovascular disease (103). The neurocognitive 
and metabolic morbidity associated with treatment of 
craniopharyngiomas via aggressive surgical resection and 
subsequent radiation therapy underscores the need for 
research and development of novel drug therapies. In recent 
years, insights gained from the molecular mechanisms that 
drive pathogenesis of craniopharyngiomas have introduced 

the possibility that targeted therapies may developed for the 
treatment of these tumors. 

CTNNB1/β-catenin gene mutation in adamantinomatous 

craniopharyngioma 

A mutation of CTNNB1 resulting in the over-expression 
β-catenin, mediated via activation of the Wnt signaling 
pathway, has been implicated in the tumorigenesis of 
adamantinomatous craniopharyngiomas (104). β-catenin 
is a protein encoded by the CTNNB1, and is part of 
the cadherin protein complex that mediates cellular 
adhesion (105). β-catenin also comprises an important 
part of the Wnt signaling pathway, which mediates cellular 
proliferation. Aberrations in the β-catenin/Wnt signaling 
pathway have been implicated in the pathogenesis of breast, 
colorectal, and endometrial cancer (106). In its inactivated 
form, β-catenin is found in the cellular membrane, where 
it can be readily degraded by proteasomes. Mutations in 
the CTNNB1 has been shown to activate the Wnt pathway, 
which renders β-catenin resistant to degradation and instead 
mobilizes β-catenin to the nucleus of cells to promote 
tumor cell migration (107).

Sekine et al. performed DNA sequencing analysis on 16 
patients who underwent resection of craniopharyngiomas 
and found that all ten adamantinomatous specimens 
harbored β-catenin gene mutations, which was not 
found in any of the papillary subtype samples (108). 
Immunohistological analysis revealed the cellular location 
of β-catenin, too, was significantly different between the 
two subtypes. The adamantinomatous subtype showed 
predominantly cytoplastic and nuclear expression of 
β-catenin, with lack of membranous staining, in contrast 
to papillary subtype specimens that exclusively harbored 
β-catenin in cellular membranes. Taken together, this 
study was the first to show that in addition to separate 
histologic findings between the two tumor subtypes, 
adamantinomatous craniopharyngiomas harbor a distinct 
genetic profile compared to papillary craniopharyngiomas, 
with different underlying mechanisms of tumorigenesis 
(Table 1). 

The exon 3 location of the CTTNB1 encodes for the 
glycogen synthase kinase-3 (GSK-3) domain responsible 
for the phosphorylation of β-catenin, and mutations in this 
gene prevent the protein from effectively being marked for 
proteolysis. Goschzik et al. examined whether the CTTNB1/
β-catenin mutation at different phosphorylation sites 
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corresponded to variable clinical behavior of these tumors, 
and found that among five sites of somatic mutation there 
was no significant difference in progression-free survival; 
however, there was a trend towards poorer outcome amongst 
patients who harbored mutations at the Thr41 site though 
its significance was limited by small sample size (109).  
Guadagno et al. investigated markers that predicted 
increased risk of recurrence, and found that increased 
immunohistochemical expression tumor cell clusters 
containing β-catenin was associated with a higher rate of 
recurrence (110). 

The presence of CTTNB1/β-catenin mutations that 
result in Wnt pathway activation has been corroborated as 
being a key marker in the pathogenesis and progression 
of adamantinomatous craniopharyngiomas, and studies 
are underway investigating this gene mutation as a target 
for therapeutic drug development (111). Furthermore, 
the discovery of β-catenin mutations as a principal 
factor in the clinical behavior of adamantinomatous 
craniopharyngiomas underscores the need for genetic testing 
and immunohistochemical staining to serve as important 
adjuncts in the pathologic diagnosis of these tumors as well 
as potentially predict clinical outcome. Although there are 
no clinical trials currently available for adamantinomatous 
craniopharyngiomas, several phase I and phase II trials are 
underway investigating Wnt/β-catenin signaling inhibitors 
to treat other solid tumors (112), and the results of these 
studies may readily be translatable to craniopharyngiomas 
given the same underlying disease pathogenesis.

BRAF (V600E) mutation in papillary craniopharyngioma

Brastianos et al. first reported the presence of V600E BRAF 
oncogene mutation, with resultant activation of the MAP 
kinase/ERK signaling pathway, as a crucial underlying 

aberration that drives the pathogenesis of papillary 
craniopharyngiomas (113). Using whole exome sequencing 
analysis, V600E BRAF mutations were identified in all 
three ‘discovery’ papillary craniopharyngioma specimens 
(including one from a pediatric patient). None of these were 
found to harbor CTNNB1/β-catenin mutations. This finding 
was corroborated by performing targeted genotyping in a 
larger cohort, and BRAF mutations were detected in 95% 
of papillary craniopharyngiomas. Although it was already 
widely believed that the two subtypes of craniopharyngioma 
have distinct underlying genetic attributes, this study 
was the first to report the specific mutation driving the 
pathogenesis of the papillary subtype, thereby identifying a 
potential target for therapeutic drug treatment.

Since this crucial discovery, several case reports have 
been published that report a marked response to treatment 
of papillary craniopharyngiomas using BRAF inhibitors. 
Aylwin et al. were the first to report the successful 
treatment response of recurrent craniopharyngioma with 
the use of vemurafenib, a BRAF inhibitor. In their case 
report, a patient with histologically-confirmed papillary 
craniopharyngioma who had previously undergone three 
endoscopic tumor resections and adjuvant radiation 
therapy presented with tumor recurrence. The patient was 
treated with vemurafenib for three months, and repeat 
MRI showed a dramatic reduction in tumor size after two 
weeks. However, the tumor recurred within six weeks after 
treatment was discontinued (114). Brastianos et al. published 
a case report of a patient with recurrence of a large, cystic 
tumor who was treated with dual BRAF (dabrafenib) and 
MEK (trametinib) inhibitors, with resultant decrease of 
over 80% in the size of the tumor. Following this treatment, 
the patient’s tumor was amenable to endoscopic resection, 
and with adjuvant radiosurgery, the authors report that he 
remained symptom-free 18 months after treatment (115).  

Table 1 Clinical and genetic characteristics of adamantinomatous and papillary subtypes of craniopharyngioma

Adamantinomatous Papillary

Age at presentation Bimodal: predominantly in children, and in some 
adults

Adults

Radiographic features Frequently with calcifications and cystic-
components

Often lacks calcifications and/or cystic components

Histologic characteristics Whorls of palisading columnar epithelium; “wet” 
keratin

Squamous epithelium

Genetic aberration CTNNB1 mutation (Wnt signaling pathway) BRAF (V600E) mutation (MAP kinase/ERK signaling 
pathway)
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In another case study, Rostami et al. reported near 
resolution of tumor four months after initiating treatment 
with dual MEK and BRAF inhibitors. The treatment 
was discontinued after the patient developed pyrexia, and 
the subsequent clinical course, including whether tumor 
recurrence occurred, was not reported (116). 

The BRAF inhibitor vemurafenib is currently FDA-
approved for the treatment of late-stage melanoma, which 
frequently harbors the same V600E mutation as papillary 
craniopharyngioma. In one randomized phase III clinical 
trial, patients receiving vemurafenib had significantly longer 
overall survival compared to the chemotherapeutic agent 
dacarbazine (117). In another phase III trial for metastatic 
melanoma, a separate BRAF inhibitor (dabrafenib) and 
adjunct MEK inhibitor (trametinib) was shown to improve 
overall survival compared to BRAF inhibitor monotherapy, 
suggesting that the addition of a MEK inhibitor can protect 
against BRAF inhibitor resistance (118). However, the 
response of BRAF inhibitors to treat other types of tumors 
has been more guarded. Hyman et al. conducted a phase II 
study that investigated tumor response to vemurafenib in a 
variety of non-melanoma cancers harboring BRAF V600E 
mutations and found a highly variable tumor response. This 
study highlights that although targeted therapies can be 
developed to treat tumors harboring specific mutations, the 
sensitivity of response may vary between different types of 
tumors (119). 

Given that there has been a singular underlying 
mutation identified that drives the pathogenesis of 
papillary craniopharyngiomas, the use of targeted drug 
therapy holds great promise for the treatment of this 
tumor. There is a phase II clinical trial currently underway 
(NCT03224767) investigating the combined use of BRAF 
and MEK-inhibitors (vemurafenib and cobimetinib) for the 
treatment of BRAF V600E mutant residual or recurrent 
craniopharyngiomas. Given the long-term morbidity 
associated with the current management paradigm for 
craniopharyngiomas, development of a targeted treatment 
for patients with BRAF V600E mutant papillary subtype 
tumors could serve not only for the treatment of recurrent 
tumors, but also potentially as a neoadjuvant therapy to 
reduce tumor size prior to surgery or radiation and limit the 
long-term morbidity associated with these treatments.

Discussion

There is a paucity of effective agents for refractory 
or  re lapsed  meningioma,  p i tu i tary  adenoma,  or 

craniopharyngioma, though a new focus on investigating 
tumorigenic drivers has resulted in the development 
of promising therapies, particularly for NF-2 mutated 
meningiomas and craniopharyngiomas harboring mutations 
of V600E BRAF. In contrast, NF-2 wild-type meningiomas 
often exhibit a high mutational burden which may be 
more responsive to immunotherapy. Clarification of the 
genetic and epigenetic changes which drive development of 
pituitary adenomas is still developing, though the inverse 
relationship between MGMT immunoexpression and the 
response to temozolomide warrants interest.
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