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Introduction

The diagnostic and therapeutic approach to patients with 
non-small cell lung cancer (NSCLC) has undergone 
a paradigm shift since 2003. Increasingly NSCLC is 
classified by the presence or absence of specific genomic 
alterations, several of which have immediate therapeutic 
implications. Rearrangements involving the anaplastic 
lymphoma kinase (ALK) gene were first appreciated as potent 
oncogenic drivers in 2007, spawning the development 
of ALK tyrosine kinase inhibitors (TKIs) (1,2). The 
clinicopathologic features of ALK-rearranged (ALK+) 
NSCLC are well described, and ALK+ disease is thought 
to represent 4-7% of all NSCLC (3-5). The clinical benefit 
and feasibility of targeting ALK was demonstrated first 
with the multitargeted TKI crizotinib, and subsequently 
confirmed in phase II and III trials (6-9). Second generation 

ALK inhibitors (ALK-i) may offer further improvements 
in overall response rate (ORR), median progression free 
survival (PFS), and overall survival (OS), and phase III trials 
are ongoing (10,11).

Increasing clinical experience and improved survival 
durations have led to the appreciation of failure patterns in 
patients treated with ALK-i. Understanding the landscape 
of acquired resistance to ALK-i has improved, but this 
has been almost exclusively studied from progression 
biopsies in extra-cranial disease sites. Patients with CNS 
disease represent a disproportionate minority in clinical 
trials despite the relative frequency of brain metastases 
in NSCLC (12,13). In unselected surgical series the 
frequency of ALK+ NSCLC approaches 3% in resected 
brain metastases, approaching the frequency across all 
NSCLC (14). The ability of ALK-directed therapies to 
control and prevent the development of CNS metastases 
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remains incompletely studied, with early reports suggesting 
inefficient cerebrospinal fluid penetration for crizotinib (15). 
In the following review we discuss the CNS activity of 
FDA-approved and investigational ALK-directed therapies. 
Important future directions and correlative studies needed 
to refine the use of ALK-i in ALK+ patient with CNS 
disease are highlighted. 

Crizotinib

Crizotinib is a small molecule TKI with activity against the 
receptor tyrosine kinases (RTK) ALK, ROS1, and MET (16-18). 
In pre-clinical ALK+ NSCLC cell line models the IC50 for 
crizotinib is 60-120 nM, well below the median steady state 
plasma concentration of 570 nM/L (274 ng/mL) achieved with 
the approved 250 mg twice daily oral dosing (Table 1) (19,29). 
Anecdotal reports have suggested a poor CSF penetration 
with a CSF concentration of only 1.4 nM/L suggesting a 
very poor CSF-to-plasma concentration ratio (Table 1) (15). 
Despite the low CSF-to-plasma ratio significant CNS 
radiographic responses to crizotinib have been described, 
suggesting factors beyond pharmacokinetic resistance alone. 

A recent retrospective analysis focusing on crizotinib in 
ALK+ patients with brain metastases who were enrolled 
in the PROFILE 1005 and 1007 trials highlights broader 
CNS TKI issues (13). Among the 888 patients in the pooled 
PROFILE 1005 and 1007 studies, 275 were known to have 
brain metastasis (BM) at study entry (109 untreated, 
166 previously treated). The intracranial response rate was 
18% in untreated BM and 33% in previously treated BM, 
significantly lower than the over 50% systemic ORR (13). 
Interestingly, the median intracranial time to progression 

(TTP) was nearly doubled in patients whose BM were 
treated prior to crizotinib initiation (7.0 vs. 13.2 months). 
Further, among the 275 patients with BM at study entry, 
the CNS was a site of progressive disease (PD) in 70% of 
cases of PD on crizotinib (13). This series confirms the 
clinical observation that the CNS is a common site of 
progression in ALK+ NSCLC, and is hypothesis generating 
for future studies and comparisons amongst ALK TKIs. 
Should all patients undergo CNS-directed therapies such 
as whole brain radiotherapy (WBRT) or stereotactic 
brain radiotherapy (SBRT) prior to or at progression on 
crizotinib? There is a strong suggestion of added benefit 
to continuing crizotinib after disease progression (30,31). 
However, in the phase II crizotinib trial the most common 
site for single organ PD was the CNS (32). While crizotinib 
has demonstrated CNS activity, next-generation ALK-i has 
demonstrated further improvements and is discussed below. 

Ceritinib

The second generation ALK-i ceritinib (LDK378) is a 
potent ATP-competitive inhibitor with increased activity 
against common ALK point mutations including L1196M, 
G1269A, S1206Y, and I1171T (20,33,34). Although less 
active against the uncommon ALK alterations C1156Y, 
L1152P, G1202R, F1174C and 1151T-ins ceritinib 
demonstrated approximately 20-fold greater efficiency in 
ALK+ NSCLC cell lines and prolonged activity in xenograft 
models (Table 1) (20,35). Phase I testing determined a 
plasma CMAX 800±205 ng/mL at a dose of 750 mg orally 
once per day (11). The activity of ceritinib in ALK+ 
NSCLC has been confirmed in phase I and II testing with 

Table 1 Preclinical and pharmacokinetic parameters for selected ALK inhibitors in clinical development

Compound ALK enzymatic IC50 (nM)
ALK in vitro/vivo GI50 

(H3122, H228) (nM)

Trough plasma 

concentration (nM/L)
CSF concentration (nM/L) Ref

Crizotinib 3.6 245, 107 570 1.4 (17,19,20)

Ceritinib 0.15 6.3, 3.8 1,254 N/A (11,20)

Alectinib 1.9 33, 53 951 2.7 (10,21-23)

AP26113 0.62 4, 10 ~1,000 N/A (24-26)

PF-06463922 <0.07 1.3 551 (rat) 3,475 nM/h (27,28)

The reported in vitro data represent the most commonly referenced values. The GI50 is highly variable across different ALK 

mutations, and the GI50 presented represents reported values using cell lines H3122 and H228 expressing the EML4-ALK 

rearrangement. Data for H3122 and H228 models are not available for PF-06463922, and are shown for 3T3 EML4-ALK 

engineered cell lines. Activity across differing ALK mutations is reviewed in the appropriate references. ALK, anaplastic lymphoma 

kinase; N/A, not available.
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ORR of 58% in patients receiving at least 400 mg daily, and 
56% in the 80 patients previously treated with crizotinib (11). 
In the 34 crizotinib-naive patients who received at least 
400 mg the ORR was 62%. Among the 114 ALK+ NSCLC 
patients receiving at least 400 mg daily the median PFS was 
7.0 months, and was similar (6.9 months) in the crizotinib 
resistant subgroup (n=80) (11). Based on this data ceritinib 
was approved in April 2014 for ALK+ NSCLC patients who 
progressed or were intolerant to crizotinib. Subsequently, 
the European Medicines Agency (EMA) has recommended 
ceritinib for approval in Europe in March 2015. 

The CNS activity of ceritinib is less well studied, and 
CSF measurements are not available (Table 1). However, 64 
(49%) patients in the phase I ceritinib study had BM, and in 
the updated presentation the ORR was 54% in 124 patients 
with BM at study entry (36). Further, the ORR was 69.2% 
in ALK-i naive BM and 50.0% in patients previously 
exposed to ALK-directed therapy. Overall, the median 
PFS for patients with BM at entry was 6.9 months, not 
statistically different from the overall study population (37). 
The improved CNS activity likely reflects the improved 
chemical potency and/or improved CNS penetration. 
Routine CSF sampling can be cumbersome to incorporate 
into early phase clinical trials, but provides important details 
needed to refine ALK-directed therapy. Further, direct 
comparisons across ALK-i in terms of CNS activity are 
confounded by a lack of CSF pharmacokinetic parameters.

Alectinib

Alectinib (CH5424802, RO5424802) is another highly 
selective orally available ALK-i with favorable preclinical 
s tudies  in  ALK-driven cancer  models .  Alect in ib 
demonstrates potent ALK inhibition with an in vitro kinase 
IC50 of 1.9 nM, and is also active against the F1174L, 
R1275Q, and gatekeeper L1196M ALK mutations (21-23). 
The clinical activity of alectinib was demonstrated in a phase 
I-II studies at doses of 300 and 600 mg twice daily. In the 
phase I study of crizotinib naive patients receiving alectinib 
300 mg twice daily the plasma trough concentration is 
463±369 ng/mL with a CMAX of 575±322 ng/mL, well above 
the levels needed for ALK inhibition (Table 1) (10). Of the 
46 patients in the phase II portion of the alectinib trial the 
response rate was 93.5% with treatment duration over 
7 months (10). Over 30% (33%, n=15) of the 46 patients in 
the phase II portion had known BM. Although 26% (n=12) 
with BM had undergone prior radiation, disease control 
in the CNS was favorable, with a median of 6.5 months in 

the original study. Subsequently, the activity of alecitnib in 
crizotinib resistant or intolerant patients has been confirmed 
in a phase 1/2 study (38). Twenty-one patients enrolled in 
this trial had BM at study entry, and the response rate in the 
CNS was 52% (n=11) across all CNS subgroups. In the four 
patients with no prior CNS radiation there two complete 
responses, one partial response, and one patient with stable 
disease. Paired steady state and CSF samples from alectinib 
at 600 and 900 mg twice daily demonstrate a CSF trough 
concentration of about 2.7 nM/L for the phase II dose of 
600 mg orally twice per day (38). In animal models alectinib 
reaches the cerebral hemispheres and cerebellum at tissue 
concentrations comparable to the level in plasma (39).

The study by Gadgeel and colleagues raises several 
important considerations for the management of ALK+ 
NSCLC with CNS metastases. The response assessment 
in the CNS used standard RECIST criteria, in which only 
nine patients had measurable CNS lesions at baseline, 
thereby limiting the conclusions due to small sample size. 
The problems with RECIST evaluation of CNS lesions 
is further highlighted by an interesting patient in the 
phase I alectinib study. A patient with systemic partial 
response developed RECIST progression in a previously 
SBRT-treated occipital metastasis (40% enlargement) 
in the context of response in the two other known CNS 
lesions. Due to isolated progression this patient was taken 
for surgical resection with pathological examination 
indicating the lesion was entirely necrotic, with no viable 
tumor (38). Thus, this case represents pseudoprogression, 
possibly related to the use of RECIST, rather than a CNS 
specific response assessment system such as the RANO 
criteria (40-42). Overall, alectinib demonstrates CNS 
activity in both crizotinib naive and crizotinib resistant 
ALK+ NSCLC. Numerically the CNS response rates are 
comparable to ceritinib and more rigorously studied in 
the case of alectinib. However, the small sample sizes, use 
of imprecise assessment tools (RECIST), and relatively 
short follow up duration limit direct comparisons and 
conclusions.

AP26113 and PF-06463922

AP26113 is a next-generation ALK and EGFR (mutant 
EGFR only) inhibitor with activity across all known 
crizotinib resistant ALK mutations. Preclinical studies have 
identified potent ALK inhibition with sub-nanomolar in vitro 
kinase IC50 and achievable plasma concentrations well above 
the GI50 for several cell lines models (Table 1) (24-26). Early 
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clinical activity is comparable to alectinib, and among 72 
evaluable ALK+ NSCLC the response rate is 72% (n=52) 
with a median response duration of 49 weeks (43). A similar 
response rate of 69% and median PFS of 47.3 weeks was 
seen in the ALK+ NSCLC with prior crizotinib therapy 
(n=65). In the 14 patients with untreated or progressing 
BM the response rate was 71% (n=10) with four complete 
CNS responses (43). The CNS responses occurred almost 
exclusively in patients at the 180 mg daily dosing, and have 
not yet been confirmed at the 90 mg daily dose moving 
forward in phase II testing. The promising phase I-II results 
led the FDA to assign AP26113 breakthrough designation 
in October 2014. Further studies including the phase II 
ALTA trial in refractory ALK+ NSCLC are ongoing and 
will provide further data on optimal dose schedule (90 mg 
daily or 90 mg lead in followed by 180 mg daily) as well as 
clarify CNS activity. 

PF-06463922 is another next-generation ALK-i 
structurally engineered to have improved CNS penetration. 
The p-glycoprotein (Pgp) mediated efflux mechanism is 
a known barrier to achieving optimial CNS penetration 
and optimal CSF to free plasma ratios (44,45). The 
macrocyclic chemical structure, lipophilicity, relatively 
lower molecular weight (406.4 g/M), and area under the 
curve ratio of CSF to free plasma of 0.31 demonstrated 
favorable CNS penetration with a PF-06463922 (27). By 
way of comparison, the CSF to plasma ratio is 0.0026 
for crizotinib (plasma concentration, 273 ng/mL; 
CSF, 0.616 ng/mL) (15). Further suggestion of CNS 
penetration can be extrapolated from the activity of PF-
06463922 in the transgenic FIG-ROS1-driven glioblastoma 
mouse model where significant tumor regression has been 
shown (28). Beyond the CNS PF-06463922, like AP26113 
is a potent ALK-i with promising preclinical efficacy against 
the gatekeeper L1196M ALK mutation (Table 1) (28,46). 
Based on promising pre-clinical systemic and CNS activity 
PF-06463922 is currently in early phase clinical trials in 
ALK+ NSCLC. 

Conclusions

The biologic understanding and therapeutic options in 
NSCLC have changed drastically in the last 10 years. 
The identification of a subset of NSCLC driven by 
ALK-rearrangements has led to the rapid development 
and approval of ALK-directed therapies that have already 
drastically improved patient outcomes compared to 
chemotherapy (8,9). Despite improved outcomes, therapy 

is not curative and resistance universally develops, with the 
CNS as the most common site of PD. Not surprisingly, 
the CNS activity of ALK-i tends to parallel the chemical 
potency of the compound. Although incompletely studied, 
the idea that in the event of equal CNS pharmacokinetic 
parameters, the more potent inhibitor is likely to have 
improved clinical activity appears to bear out in early 
clinical investigations. The next-generation ALK-i has 
improved CNS activity over crizotinib but several important 
issues warrant consideration moving forward.

Increasingly, whether through tissue or blood-based 
assays, progression biopsies are informing subsequent 
therapeutic choices. The current next-generation inhibitors 
have highly variable inhibitory activity across differing ALK 
mutations. With the anticipated approval of multiple 
next-generation ALK-i will the choice of therapy, including 
BM, be based on pharmacokinetic (PK) parameters in the 
observed resistance mutation? There is a further paucity of 
data studying whether the molecular determinants of ALK-i 
resistance are the same in CNS and extracranial disease. 
Increasing use of surgical resection, and possible CSF 
sampling, may help to answer these questions.

Similarly, the current criteria used to assess CNS 
response in solid tumors are imperfect. The proposed 
Response Assessment in Neuro-Oncology (RANO) group 
criteria accounts for pseudoprogression resulting from 
radiation necrosis within 3 months of radiotherapy completion 
in primary CNS malignancies such a glioblastoma 
multiforme (40). However, neither RECIST nor the RANO 
criteria outline pseudoprogression determination in non-
primary CNS solid tumors such as NSCLC. We expect that 
with the CNS activity of next-generation ALK-i the incidence 
of pseudoprogression will increase, and further diagnostic 
modalities (steroid challenge, short interval repeat MRI, 
MR spectroscopy, and surgical biopsy/resection) will need 
to be explored prior to removing a potentially active ALK-i 
from a given patients’ therapy (47). 

Finally, the optimal sequence of ALK-i remains to be 
determined. Next-generation agents such as alectinib can 
salvage CNS disease in patients treated with both crizotinib 
and ceritinib (48). Larger head to head trials such as the 
phase III ALEX trial (alectinib vs. crizotinib) will directly 
investigate PFS in the CNS and may provide further 
information to inform treatment decisions for ALK+ 
patients with BM. Overall, the outcomes for ALK+ with 
CNS disease are expected to continue to improve with the 
introduction of increasingly effective therapies. Here we 
have reviewed the current data in ALK+ NSCLC with CNS 
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disease and suggested several CNS-specific considerations 
that are important to determine the optimal management of 
BM moving forward. 
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