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Family history and risk of pancreatic cancer

Family history is a long-recognized risk factor for pancreatic 
cancer and an important predictor of disease risk. Studies 
have suggested that approximately 5–10% of pancreatic 
cancer patients report a close relative with pancreatic cancer 
(1,2). Most epidemiological studies have demonstrated a 
2- to 3-fold increase in risk of pancreatic cancer among 
individual with affected first-degree relatives (FDRs)  
(3-12). However, some studies have shown even higher risk. 
A Swedish study reported a standardized incidence ratios 
(SIRs) for pancreatic cancer of 1.73 (95% CI: 1.13–2.54) in 
offspring with at least one parent presented with pancreatic 
ductal adenocarcinoma (PDAC) (13). In a prospective study 
from the National Familial Pancreas Tumour Registry 
(NFPTR), the SIRs for pancreatic cancer in comparison to 
the Surveillance, Epidemiology, and End Results (SEER) 

rates were 6.4 (95% CI: 1.8–16.4) and 32.0 (95% CI: 
10.2–74.7) in individuals with two and three FDRs with 
pancreatic cancer (14).

Familial clustering was considered the first evidence 
supporting the genetic predisposition to pancreatic 
cancer. Reports of multiple siblings in one generation and 
individuals in three consecutive generations affected by 
pancreatic cancer are strong evidence of a hereditary form 
of the disease following the Mendelian inheritance (15-19). 
This was later supported by segregation analyses, which 
favored a major gene model that was predicted to follow 
an autosomal dominant pattern of a rare allele (20). As 
demonstrated in the observational epidemiologic studies, 
individuals with a family history of pancreatic cancer are 
at an increased risk of developing the disease themselves. 
In addition, a population-based twin study in Europe has 
estimated the heritability for pancreatic cancer to be 36% 
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(95% CI: 0–53%) (21). As more evidence of the genetic 
basis of pancreatic cancer has emerged, an operational 
definition of familial pancreatic cancer (FPC) was proposed 
to facilitate investigations of the inherited components of 
the disease. FPC is defined as kindreds with at least a pair 
of FDRs diagnosed with PDAC. Comparing to the general 
population, FPC kindred members have a 7- to 9-fold 
increased risk of pancreatic cancer (14,22). Risk is even 
higher among members of FPC kindreds with a young-
onset case (<50 years; SIR =9.31; 95% CI: 3.42–20.28) than 
those without (SIR =6.34; 95% CI: 4.02–9.51) (22).

Both prospective and retrospective studies have found 
increased risks of other cancers in relatives of pancreatic 
cancer patients, particularly breast cancer (23,24),  
melanoma (24), ovarian (25), and colorectal cancer (24,26). 
Study from NFPTR reported an increased risk of dying 
from cancer of the breast [weighted standardized mortality 
ratio (wSMR) =1.66; 95% CI: 1.15–2.34], ovarian (wSMR= 
2.05; 95% CI: 1.10–3.49), bile duct (wSMR =2.89; 95% CI: 
1.04–6.39) and bladder (wSMR =1.90; 95% CI: 1.00–3.30)  
in FDRs of FPC probands (27). Elevated mortality of colon 
cancer (wSMR=2.31; 95% CI: 1.30–3.81) and prostate cancer 
(wSMR=2.31; 95% CI: 1.14–4.20) were also observed among 
the relatives of young-onset (<50 years old) pancreatic cancer 
probands (27). These findings suggest a shared genetic 
etiology between pancreatic cancer and several other cancers, 
and the potential benefits of surveillance at-risk relatives for 
cancers with established screening guidelines. 

Pancreatic cancer genes

Pancreatic cancer is more prevalent in families with several 

hereditary syndromes, for which the predisposing genes have 
been identified, including BRCA1 and BRCA2 associated 
with hereditary breast and ovarian cancer (HBOC), STK11 
associated with Peutz-Jeghers syndrome (PJS), CDKN2A/p16 
associated with familial atypical mole and multiple melanoma 
(FAMMM), mismatch repair (MMR) genes associated with 
Lynch syndrome, and PRSS1 associated with hereditary 
pancreatitis (HP). These genetic syndromes are reported to 
be associated with a substantially higher risk of pancreatic 
cancer. The recent discovery of germline mutations in PALB2 
and ATM gene in FPC kindreds has extended the list of 
established high- and moderate-risk pancreatic cancer genes 
(Table 1). 

BRCA1/2

BRCA1 and BRCA2 gene are well-known high-penetrant 
predisposing genes for HBOC. These genes are involved in 
the DNA damage response and DNA double-strand breaks 
repair. Pancreatic cancer is the third most common cancer 
associated with BRCA1/2 mutations, though the penetrance 
at age 70 is much lower (28-31). The prevalence of BRCA2 
mutations in pancreatic cancer patients is 1.4–8.2% for 
patients unselected for family history (32-36), about 6–16% 
among FPC patients (37-42), and up to 17.2% in families 
with 3 or more pancreatic cancers (38,41,43). Comparing 
to the general population, the risk of pancreatic cancer is 
about 2–6 fold in BRCA2 carriers (28,44) and 2–5 fold in 
BRCA1 carriers (29,30,44). Several studies had reported a 
higher risk of pancreatic cancer in BRCA2 carriers than in 
BRCA1 carriers (28,31,44-46). BRCA1/2 mutation carriers 
are at particularly high risk (SIR =4–10) for early onset 

Table 1 Pancreatic cancer predisposing genes

Genes Predisposition syndromes Risk of pancreatic cancer

BRCA2 Hereditary breast and/or ovarian cancer SIR =2.20–5.90

BRCA1 SIR =1.60–4.73

PALB2 Familial breast cancer Increased

ATM Increased

STK11 Peutz-Jeghers syndrome SIR =76.2–139.7

PRSS1 Hereditary Pancreatitis SIR =53–87 

CDKN2A Familial atypical multiple mole and melanoma syndrome SIR =14.8–80.8

Mismatch repair genes (MLH1, MSH2, MHS6 
and PMS2)

Hereditary non-polyposis colorectal cancer No effect up to SIR =10.68

SIR, standardized incidence ratio.
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pancreatic cancer (28-30,44). FDRs of BRCA1/2 carriers, 
regardless of their carrier status, have a significantly higher 
risk of pancreatic cancer than the general population (44,46).
 

PALB2

PALB2 gene is a tumor suppressor that interacts closely 
with both BRCA1 and BRCA2 during double-strand DNA 
repair. Mutations of PALB2 had previously been associated 
with familial breast cancer (47). Jones et al. first reported 
the discovery of truncating mutations of PALB2 gene in 
four FPC probands from the NFPTR (48). Since then, 
pathogenic mutations of PALB2 gene have been found in 
0.4–4% FPC families, majority of which were families with 
history of both pancreatic cancer and breast/ovarian cancer 
(49-55). 

ATM

ATM is a breast cancer susceptibility gene that coordinates 
the DNA double-strand breaks repair. Deleterious 
mutations of ATM gene were first reported by Roberts 
and his colleagues in two FPC families with at least 
three members affected by pancreatic cancer (56). In the 
subsequent analysis, four additional ATM mutations were 
found in 166 FPC patients compared to none in 190 spouse 
controls (56). To date, ATM mutations are found in 1–5% 
patients with pancreatic cancer (35,36,42,57-59).

STK11

PJS is caused by germline mutations in the STK11 gene 
(60-62). PJS patients are at very high risk of developing 
cancer during their lifetimes, particularly gastrointestinal 
cancer and gynecological cancer. The cumulative risk of 
developing any gastrointestinal cancer is 38–66% at age 
70 (63). Compared to the general population, PJS patients 
have a 76- to 140-fold elevated risk for pancreatic cancer  
(64-66). The cumulative risk of developing pancreatic 
cancer at age 70 in PJS patients is 11–55% (64-67). 

CDKN2A

CDKN2A is a tumor suppressor gene that is considered 
a major cause of familial melanoma. In melanoma-prone 
families of European ancestry, pancreatic cancer is the 
second most common type of cancers associated with 
CDKN2A mutations. Longitudinal studies in these families 

have found a 15- to 80-fold increased risk of pancreatic 
cancer in carriers of CDKN2A mutations comparing to 
the general population (68-73). The risk of developing 
pancreatic cancer is also higher in FDRs of carriers than in 
FDRs of non-carriers (RR =7.4; 95% CI: 2.3–18.7) (74). 

MMR genes

Hereditary non-polyposis colorectal cancer (HNPCC), 
also known as Lynch Syndrome, accounts for 2–5% of all 
colorectal cancer. It is caused by inactivating mutations 
of DNA MMR genes: MLH1, MSH2, MSH6 and PMS2. 
While several studies found no increase in risk of pancreatic 
cancer in Lynch Syndrome patients (75-78), others reported 
an approximately 7- to 10-fold elevated risk of developing 
pancreatic cancer in carriers of MMR gene mutations  
(79-82). The relative risk of pancreatic cancer is higher at 
younger age (79,80). The cumulative risk of developing 
pancreatic cancer at age 70 among mutation carriers was 
estimated to be 3.68% (95% CI: 1.45–5.88%) (80). 

PRSS1

HP is autosomal-dominant disorder characterized by 
recurrent episodes of acute pancreatitis in childhood and 
frequent progression to chronic pancreatitis. Germline 
mutations in PRSS1 are responsible for the majority of HP 
cases. Comparing to the general population, the risk of 
pancreatic cancer is about 69-fold higher in HP patients, 
and the median age of cancer onset was at least 15 years 
earlier (83-86). About 20–50% HP patients would develop 
pancreatic cancer at age 70 (83-85,87). The risk is even 
higher among smokers with HP who tend to develop 
pancreatic cancer 20 years before non-smokers (85,88). 

Germline mutations in sporadic cases

Inherited genetic alterations are not restricted to patients 
with FDRs affected by pancreatic cancer. While current 
guidelines recommend germline genetic testing for 
pancreatic cancer patients with a first degree relative with 
pancreatic cancer or pancreatic cancer patients with a 
family history indicative of one of the above mentioned 
genetic syndromes, patients with apparently sporadic 
pancreatic cancer may also harbor mutation in a pancreatic 
cancer susceptibility gene. In fact, the discovery of the 
role of BRCA2 in pancreatic cancer was based upon the 
observation of Three germline mutations in BRCA2 was 
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found in 41 (7.3%) sporadic pancreatic cancer patients (32).  
Subsequent studies have showed that in a series of 306 
unselected PDAC patients, 14 carried mutations in BRCA1 
or BRCA2 while only 2 of the 14 had a family history of 
PDAC (33). Salo-Mullen et al. reported a 7.4% prevalence 
of BRCA mutations in 27 PDAC patients of Ashkenazi 
Jewish ancestry without a family history of breast, ovarian or 
pancreatic cancer (34). Studies have reported 0–3% sporadic 
or unselected pancreatic cancer patients carrying PALB2 
mutations, leading to an aggregated prevalence of 0.75% 
(55). Recently, in an evaluation of 854 pancreatic cancer 
patients, twelve of them had germline BRCA2 mutations, 
ten with ATM, three with BRCA1, and two with PALB2 (36).  
Larger scale studies are currently underway to evaluate 
the mutation prevalence in apparently sporadic pancreatic 
cancer and expanding genetic testing beyond the current 
guidelines.

Targeted therapy

Understanding genetic predisposition of pancreatic 
cancer has important implication for the development and 
translation of targeted therapies. Tumors with mutations 
in BRCA1/2, PALB2, and ATM are highly sensitive to 
DNA-damaging related treatments such as crosslinking 
agents (89-91) and poly(ADP-ribose) polymerase inhibitors 
(PARPi) (92-95). Preclinical studies have demonstrated 
improved sensitivity to chemotherapeutic agents and 
ionizing radiation in pancreatic cancer cells treated by these 
agents (96-98). The clinical benefits of using crosslinking 
agents and PARPi in patients with pancreatic cancer are 
currently being investigated. Preliminary results have shown 
promising efficacy of these agents, particularly in patients 
with BRCA2-associated pancreatic cancer (99-102).

Common low-risk susceptibility loci

Genome-wide association studies (GWAS) allow for the 
unbiased evaluation of common genomic variants associated 
with pancreatic cancer. To identify common susceptibility 
variants, five pancreatic cancer GWAS have been conducted 
by the Pancreatic Cancer Cohort Consortium (PanScan) 
and the Pancreatic Cancer Case Control Consortium 
(PanC4) in populations of European ancestry, including 
PanScan I in 2009 (103), PanScan II in 2010 (104), PanScan 
III in 2014 (105), PanC4 in 2015 (106) and a recent 
imputation analysis of GWAS data from PanScan I–III (107). 
A total of 16 pancreatic cancer susceptibility loci located 

in 13 genomic regions have been discovered in European 
populations (Table 2).

PanScan I

PanScan I was a two-stage GWAS including 1,896 patients 
with incidence pancreatic cancer and 1,939 controls in the 
discovery stage, as well as 2,457 cases and 2,654 controls 
in the replication stage. The most significant variant 
(rs505922) on chromosome 9q34.2 was mapped to the first 
intron of ABO blood group gene (103). The association 
of ABO loci with pancreatic cancer has been robustly 
replicated in studies of European (105,106,108,109) and 
Asian populations (110-112). These findings are consistent 
with the observation that individuals with blood group O 
had a lower risk of pancreatic cancer than those with groups 
A or B. About 17% to 19.5% of all pancreatic cancers in 
populations of European descent was attributable to the 
inheritance of a non-O blood group (113,114). 

PanScan II

From 3,851 pancreatic cancer cases and 3,934 controls, 
PanScan II identified three novel genomic regions 
on chromosome 13q22.1 (a large non-genic region), 
chromosome 1q32.1 (NR5A2) and chromosome 5p15.33 
(TERT-CLPTM1L) to be significantly associated with 
pancreatic cancer (104). The locus on chromosome 
13q22.1 (rs9543325) was mapped to a large gene desert 
flanked by the KLF5 and KLF12 genes. Both genes encode 
a transcription factor involved in cell transformation, 
proliferation, and carcinogenesis. Several studies have 
reported the overexpression of the KLF5 gene in pancreatic 
cancer (115-118). The KLF2 gene, on the other hand, was 
found to be downregulated in PDAC tumor tissues, and its 
expression may suppress the malignant transformation of 
PDAC cancer cells through its regulation of beta-catenin/
TCF signaling (119).

Two variants on chromosome 1q32.1 are associated 
with pancreatic cancer independently. The first significant 
variant (rs3790844) identified in PanScan II is located in the 
first intron of the NR5A2 gene (104). Imputation analysis of 
PanScan I–III detected the second variant in the upstream 
of NR5A2 (rs2816938). NR5A2 encodes the nuclear receptor 
subfamily 5 group A member 2, a transcription factor 
that activates or inhibits transcription of specific target 
genes. Overexpression of NR5A2 was observed in resected 
PDAC tumor tissues and was associated with reduced 



Chinese Clinical Oncology, Vol 6, No 6 December 2017

© Chinese Clinical Oncology. All rights reserved.   Chin Clin Oncol 2017;6(6):58cco.amegroups.com

Page 5 of 16

survival time in PDAC patients (120). Heterozygous Nr5a2 
mice exhibit increased rates of pancreatic acinar to ductal 
metaplasia and impaired recovery after chemically induced 
acute pancreatitis (121,122). Loss of Nr5a2 accelerates 
the development of oncogenesis driven by Kras (121,122). 
These findings suggest a tumor suppressor role of NR5A2 
that protects the pancreas from KRAS driven pre-neoplastic 
changes.

Four independent pancreatic cancer risk loci have now 
been identified in the multi-cancer TERT-CLPTM1L 
region on chromosome 5p15.33. The first pancreatic 
cancer risk locus identified in PanScan II is located in the 
intron 13 of CLPTM1L (rs401681). PanScan III reported 
a second independent risk locus on chromosome 5p15.33, 
tagged by a synonymous variant within the second exon of 
TERT (rs2736098) (105). A third independent risk locus 
located in the first intron of TERT gene (rs2853677) was 
discovered through a candidate gene analysis in 5,550 
pancreatic cancer cases and 7,585 control subjects from 
PANDoRA (PANcreatic Disease ReseArch) consortium 
and PanScan (123). Recently, imputation of PanScan I–

III and replication in PANDoRA and PanC4 found a 
fourth risk locus for pancreatic cancer in this genomic 
region (rs35226131), which is located about 200bps 
upstream of the transcriptional start site of TERT (107). 
The chromosome 5p15.33 region contains two plausible 
candidate genes: TERT, which encodes the catalytic subunit 
of telomerase reverse transcriptase and CLPTM1L, which 
encodes the cleft lip and palate-associated transmembrane 
1 like protein. TERT is a component of the protein and 
RNA complex that maintains telomere ends. Mutations in 
TERT promoter region were frequent in multiple tumor 
types and were correlated with increased TERT expression 
and telomerase activation (124). Common variants in the 
TERT region were associated with leukocyte telomere 
length in patients with breast and ovarian cancer (125). A 
recent study had reported an association between the minor 
allele of rs401681 and shorter telomere length in pancreatic 
cancer patients, which was consistent with the observation 
that telomere shortening occurs as an early event in 
pancreatic tumorigenesis (126-128). Overexpression of 
CLPTM1L gene are observed in lung and pancreatic 

Table 2 Genetic susceptibility loci for pancreatic cancer identified in European populations

Chr† Nearest Gene(s) Top SNP Minor/major alleles Consequence type Allelic OR (95% CI) P

1q32.1 NR5A2 rs3790844 T/C Intron 0.77 (0.71–0.84) 2.45×10‒10

1q32.1 NR5A2 rs2816938 A/T Upstream 1.20 (1.15–1.25) 4.88×10‒15

2p13.3 ETAA1 rs1486134 G/T Downstream 1.14 (1.09–1.19) 3.36×10‒9

3q29 TP63 rs9854771 A/G Intron 0.89 (0.85–0.93) 2.35×10‒8

5q15.33 TERT, CLPTM1L rs401681 C/T Intron 1.19 (1.11–1.27) 3.66×10‒7

5p15.33 TERT, CLPTM1L rs2736098 T/C Synonymous 0.80 (0.76–0.85) 9.78×10‒14

5p15.33 TERT, CLPTM1L rs35226131 T/C Upstream 0.71 (0.63–0.80) 1.70×10‒8

7p13 SUGCT rs17688601 A/C Intron 0.88 (0.84–0.92) 1.41×10‒8

7q32.3 LINC-PINT rs6971499 C/T Intron 0.79 (0.74–0.84) 2.98×10‒12

8q24.21 MYC rs10094872 T/A Intron 1.15 (1.10–1.20) 3.22×10‒9

9q34 ABO rs505922 T/C Intron 1.20 (1.12–1.28) 5.37×10‒8

13q12.2 PDX1 rs9581943 A/G Upstream 1.15 (1.10–1.20) 2.35×10‒9

13q22.1 None rs9543325 T/C Intergenic 1.26 (1.18–1.35) 3.27×10‒11

16q23.1 BCAR1, CTRB1, 
CTRB2

rs7190458 A/G Synonymous 1.46 (1.30–1.65) 1.13×10‒10

17q25.1 LINC00673 rs11655237 T/C Non-coding 
transcript exon

1.26 (1.19–1.34) 1.42×10‒14

22q12.1 ZNRF3 rs16986825 T/C Intron 1.18 (1.12–1.25) 1.18×10‒8

†, Chromosomal location in NCBI genome build 37. SNP, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval.
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cancer tissues (129-131). CLPTM1L protects tumor cells 
from genotoxic apoptosis and is required for Ras-induced 
oncogenic transformation (129,130,132). It’s also found 
that overexpression of CLPTM1 may lead to an abrogation 
of normal cytokinesis and promote cell proliferation in 
pancreatic cancer cells (131). 

PanScan III

The PanScan III study population combined 1,582 newly 
genotyped pancreatic cancer cases and 5,203 control subjects 
with PanScan I cohort and sought replication in 2,576 
cases and 6,662 controls from the PANDoRA consortium. 
Four new risk loci for pancreatic cancer was identified on 
chromosome 7q23.2 (LINC-PINT), 16q23.1 (BCAR1), 
13q12.2 (PDX1) and 22q12.1 (ZNRF3). The signal on 
7q32.3 was marked by an intronic variant (rs6971499) in 
LINC-PINT, a long intergenic p53-induced non-protein 
coding RNA located between muskelin 1 (MKLN1) and 
Kruppel-like factor 14 (KLF14). Muskelin is an intracellular 
protein that mediates cell adhesive and cytoskeletal 
responses to the extracellular matrix (133). KLF14 is a 
member of the Kruppel-like family of transcription factors 
that may act as a suppressor of KRAS-mediated cell growth 
through regulation of the cyclin A promoter (134). Loss 
of KLF14 may also trigger centrosome amplification, 
aneuploidy and spontaneous tumorigenesis (135). KLF14 
has also been associated with several metabolic phenotypes 
including type-2 diabetes mellitus (T2DM), a known risk 
factor for pancreatic cancer (136-139).

A synonymous variant residing in the last exon of BCAR1 
was noted on 16q23.1 (rs7190458). Breast cancer anti-
estrogen resistance 1 (BCAR1), also known as p130Cas 
is a member of the Cas (Crk-associated substrate) family 
of adaptor proteins with important regulatory roles in 
migration, cell cycle control and apoptosis (140). Altered 
expression and activity of p130Cas is known to promote 
metastasis and drug resistance in multiple cancers (140,141). 
In addition, two chymotrypsinogen genes, CTRB1 and 
CTRB2 are also located closely to the detected signal. As 
important members of a family of serine proteases secreted 
by the pancreas into the gastrointestinal tract (142), these 
two genes are plausible target for susceptibility variants 
at this locus. The detected signal for pancreatic cancer is 
also in proximity of a susceptibility locus (rs7202877) for 
type-I and type-II diabetes (143,144) that was found to 
impair beta-cell function (145) and influences expression of 
CTRB1/2 in pancreas tissues (146).

The top ranked variant on chromosome 13q12.2 
(rs9581943) is located in the promoter region of the PDX1 
(pancreatic and duodenal homeobox1 protein 1) gene. 
Pathway analysis of GWAS data identified PDX1, along 
with NR5A2, HNF1A, and HNF4G, as important genes for 
pancreatic development (147). The protein encoded by PDX1 
is a transcriptional activator of several genes. It is essential in 
the early development of pancreas (148), and plays a major 
role in beta-cell function and glucose-dependent regulation 
of insulin gene expression. Heterozygous mutations in 
PDX1 resulted in impaired glucose tolerance and symptoms 
of diabetes as seen in maturity-onset diabetes of the young 
type 4 (MODY4) and late-onset T2DM (149-151). 

The signal on chromosome 22q2.1 (rs16986825) maps 
to an intron in ZNRF3 (zinc and ring finger 3), which 
encodes a cell surface transmembrane E3 ubiquitin protein 
ligase that is a negative regulator of the WNT signaling 
pathway (152). Additionally, a low-penetrance breast cancer 
gene, CHEK2, is also located in proximity to the detected 
signal. This gene encodes a cell-cycle checkpoint kinase 
that cooperates with p53, BRCA1 and ATM and regulates 
cell division in response to DNA damage (153). Germline 
mutations and variants of CHEK2 had been implicated in 
susceptibility to several cancer types (154-158), including 
FPC (41,42,159).

PanC4

PanC4 was conducted on 9,925 pancreatic cancer cases and 
11,569 controls, pooling 4,164 newly genotyped cases and 
3,792 controls from nine studies in the PanC4 consortium 
with PanSan I and II cohorts in the gene discovery stage, 
and analyzed an independent set of 2,497 cases and 4,611 
controls from the PANDoRA consortium in the replication 
stage. Not only this study replicated all previously identified 
risk loci for pancreatic cancer in European populations, 
three novel associated signals were also detected on 
chromosome 17q25.1 (LINC00673), 7p13 (SUGCT) and 
3q29 (TP63) (106). Significant association was also found 
on chromosome 2q13.3 (ETAA1), a region with prior 
suggestive evidence in the Han Chinese (160).

The top variant on 17q25.1 (rs11655237) maps 
to LINC00673 (long inter-genic non-protein coding 
RNA 673). This association subsequently replicated 
in a Han Chinese population (rs11655237, OR=1.26, 
P=3.95×10‒14) (161). Through its epigenetic regulation 
of gene expression, LINC00673 may function as an 
oncogene in several types of cancers. Overexpression 
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of LINC00673 promotes tumor proliferation, invasion 
and metastasis in non-small-cell lung cancer (162-164) 
and tongue squamous cell carcinoma (165), and was 
correlated with poor prognosis in breast cancer (166). In 
contrast, expression of LINC00673 was significantly lower 
in PDAC cancer cells than in normal cells and tissues 
and overexpression of LINC00673 in the PDAC cell line 
substantially reduced the rate of cell proliferation. It was 
found that the single-nucleotide change at rs11655237 
creates a miR-1231 binding site, which diminishes the effect 
of LINC00673 in an allele-specific manner and thus confer 
susceptibility to pancreatic tumorigenesis (161). 

PanC4 reported a significant association on 7p13 with an 
intronic variant (rs17688601) of the succinyl-CoA:glutarate-
CoA transferase (SUGCT) gene. Mutations of this gene 
cause a benign form of glutaric aciduria (glutaric aciduria 
type III), a rare metabolic abnormality characterized by 
persistent isolated accumulation or excretion of glutaric 
acid (167). The role of this gene in pancreatic cancer risk is 
unclear. 

Two strongly correlated intronic variants of TP63 (tumor 
protein p63) were found to be associated with pancreatic 
cancer in PanC4 (top variants rs9864771). Protein 
encoded by TP63 (p51/p63) is a p53 homologue with 
pleiotropic functions including cell proliferation, survival, 
apoptosis, differentiation, senescence, and aging. Frequent 
overexpression of p63 was observed in resected PDAC 
tissues (168). It was suggested that different isoforms of 
p63 have opposite effects. While TAp63 induces cell death 
and cell cycle arrest with tumor suppressor features (169), 
DNp63 as the predominant isoform in pancreatic cancer 
cell lines, promotes pancreatic cancer growth, motility and 
invasion (170,171). As a tumor suppressor, p63 had reduced 
anti-oncogenetic effects compared with p53 in human 
cancer cells (172). However, loss of p63 can cooperate with 
loss of p53, leading to higher tumor burden and metastasis 
as seen in genetic mice models (168,171). It is hypothesized 
that it is the ratio of TAp63 and DNp63 that determines the 
biological outcome and chemo-sensitivity. 

Imputation analysis of PanScan I–III

Recently, an imputation analysis of the GWAS data in 5,107 
cases and 8,845 controls from PanScan I–III had uncovered 
three new pancreatic cancer signals on chromosome 1q32.1 
(NR5A2), 8q24.21 (MYC), and 5p15.33 (CLPTM1L-TERT), 
all of which are independent from previously reported 
susceptibility variants (107). 

The detected variants on 8q24.21 (rs10094872) is a 
novel risk loci for pancreatic cancer, independent from 
the previously reported loci with suggestive evidence in 
PanScan III (rs1561927). These two variants are both 
located in the 2 Mb region known to contain multiple 
susceptibility loci that influence risk of bladder, breast, 
prostate, colorectal, lung, ovarian, pancreatic, and renal 
cancer (173-177). MYC (MYC proto-oncogene, bHLH 
transcription factor) is the gene located in the closest 
proximity to the detected variant. Oncogene MYC is 
a transcription factor that has been implicated in the 
pathogenesis of one-third of all human malignancies, 
and may play an important  role in KRAS-driven 
neoplastic transformation in the pancreas (178). MYC 
overexpression occurs in up to 42% of advanced PDAC 
(179,180). Activation of MYC in adult mice has led to the 
development of ductal adenocarcinomas with metastasis 
to the liver (181). Although evidence have suggested 
regulatory roles of the 8q24.21 risk loci in the expression of 
MYC, functional analyses are warranted to allow a deeper 
understanding of the underlying mechanism (178).

GWAS in Asian populations

Two GWAS have been conducted in populations of 
Asian descent (Table 3). The Japanese pancreatic cancer 
study of 991 cases and 5,209 controls found suggestive 
associations on chromosome 6q25.3 (FOXQ1), 12p11.21 
(BICD1) and 7q36.2 (DPP6) (182). The second GWAS 
in a Chinese population of 3,584 pancreatic cancer cases 
and 4,868 controls (ChinaPC) identified five susceptibility 
loci on chromosome 21q21.3 (BACH1), 21q22.3 (TFF1), 
10q26.11 (PRLHR), 22q13.32 (FAM19A5), and 5p13.1 
(DAB2) (160). The most significant association identified 
in ChinaPC was for rs372883, a variant located in the 3’ 
untranslated region (3’UTR) of BACH1 (BTB domain and 
CNC homolog 1) gene on chromosome 21q21.3. BACH1 
is a transcription factor that belongs to the cap ‘n’ collar 
type of basic region leucine zipper factor family (CNC-
bZip). Recent studies have demonstrated a critical role 
of BACH1 in cell migration and metastasis through its 
regulation of metastasis-related gene expression in breast, 
colon and prostate cancer (183-185). The second significant 
association was detected on chromosome 21q22.3 
(rs1547374). This region harbors the trefoil family protein 
1 (TFF1) gene that encodes secretory proteins expression 
in gastrointestinal mucosa. Upregulated expression of 
TFF1 in precursor lesions of PDAC, including pancreatic 
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intraepithelial neoplasia (PanIN), intraductal papillary-
mucinous neoplasms (IPMNs) and mucinous cystic 
neoplasms (MSNs), suggests its potential involvement at 
the early stage of pancreatic carcinogenesis (186-188). 
Recent studies found that reduced expression of TFF1 
in the invasion front of human PDAC was associated 
with lymph node metastasis and poor survival in patients 
with PDAC (189). In pancreatic cancers, expression of 
TFF1 promotes tumorigenesis by suppressing oncogene-
induced senescence (190) and is correlated with increase  
metastasis (191). An intronic variant (rs2255280) in DAB2 
(clathrin adaptor protein) gene region on 5p13.1 was among 
the identified susceptibility loci in ChinaPC. Frequent 
loss expression of DAB2 in human malignant cancer cells 
suggests its potential role as a tumor suppressor (192). 
Overexpression of DAB2 inhibits cell growth, migration 
and invasion, and was correlated with poor survival in 
cancer patients (193-196). Significant association on 
10q26.11 was observed for a regulatory variant of PRLHR 
(prolactin releasing hormone receptor) gene (rs12413624). 
Polymorphisms of this gene was associated with colorectal 
cancer (197). A intronic variant of FAM19A5 (family with 
sequence similarity 19 member A5) gene on 22q13.32 was 
also associated with an increased risk of pancreatic cancer 
(rs5768709). This gene encodes a TAFA protein expressed 
predominately in brain and may function as brain-specific 
chemokines or neurokines (198). Prior to the ChinaPC 
study, there is no implication of PRLHR or FAM19A5 in the 
risk of pancreatic cancer and thus their susceptibility role is 
currently unknown.

Current status of screening high-risk populations

Screening and early detection of pancreatic cancer offer 
the best chance of reducing the high mortality rates of this 

disease. The goal of screening asymptomatic individuals 
is to identify pancreatic cancer at early stage or, ideally 
to identify high-grade precancerous lesions that can be 
resected to prevent the development of cancer. Because 
of the low incidence of pancreatic cancer in the general 
population, population level screening will demand a highly 
specific screening assay. Selective screening of individuals 
at increased risk for pancreatic cancer is considered 
worthwhile. The International Cancer of the Pancreas 
Screening (CAPS) Consortium recommends screening 
on FDRs of FPC patients, patients with PJS, and carriers 
of CDKN2A/p16, BRCA2, and carriers of MMR gene 
mutations with ≥1 affected FDR (199). FDRs of FPC 
patients represent a group of high-risk individuals that 
are relatively easy to identify in clinical settings. Of all 
identified risk factors for pancreatic cancer, PJS confers 
the greatest risk for the disease, making PJS patients good 
candidates for pancreatic cancer screening. Among the 
established pancreatic cancer genes, germline BRCA2 
mutations followed by ATM account for the highest 
percentage of inherited pancreatic cancer (34,36,40,42,58). 
It is recommended that BRCA2 mutation carriers with ≥1 
affected FDR and those with two or more affected family 
members should be considered for screening, particularly 
Ashkenazi Jewish individuals. In addition, given the 
substantially higher risk of pancreatic cancer in patients 
with CDKN2A/p16 and MMR gene mutations, screening 
is also recommended to those mutation carriers with >1 
affected FDRs (199). 

Endoscopic ultrasonography (EUS) and/or MRI/
magnetic resonance cholangiopancreatography (MRCP) are 
recommended by CAPS as initial screening tools. However, 
the CAPS Consortium could not reach consensus on ages 
to initiate or stop surveillance, the interval for follow-
up imaging, nor on the long-term management of initial 

Table 3 Genetic susceptibility loci for pancreatic cancer identified in Asian populations

Chr† Nearest gene(s) Top SNP Minor/major alleles Consequence type Allelic OR (95% CI) P

5p13.1 DAB2 rs2255280 C/A Intron 0.81 (0.76–0.87) 4.18×10‒10

10q26.11 RPLHR rs12413624 T/A Regulatory region 1.23 (1.16–1.31) 5.12×10‒11

21q21.3 BACH1 rs372883 C/T 3’ UTR 0.79 (0.75–0.84) 2.24×10‒13

21q22.3 TFF1 rs1547374 G/A Downstream 0.79 (0.74–0.84) 3.71×10‒13

22q13.32 FAM19A5 rs5768709 G/A Intron 1.25 (1.17–1.34) 1.41×10‒10

†, Chromosomal location in NCBI genome build 37. SNP, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; 3’ UTR, 
3’ untranslated region.
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abnormal results (199). Screening and early detection 
strategies should be accompanied by effective treatment 
or preventive strategies if they are to produce a significant 
survival benefit. Given morbidity and mortality associated 
with pancreatic surgery, there is little consensus about when 
surgery is required for pancreatic lesion in asymptomatic 
high-risk individuals (199). Multidisciplinary assessment is 
however recommended to make individualized decision of 
the necessity of surgical intervention. The lack of consensus 
on many aspects of pancreatic cancer screening underscores 
the need for more research to fill the knowledge gap and to 
make evidence-based decisions. 

Summary and future directions

Pancreatic cancer is rare and deadly disease with the highest 
case-fatality rate of any major cancer. Due to the lack of 
effective means for prevention, diagnosis and treatment, 
pancreatic cancer remains a major public health challenge. 
Family history, cigarette smoking, chronic pancreatitis, 
and diabetes are well-established risk factors for pancreatic 
cancer. Pancreatic cancer is fundamentally a genetic 
disease caused by both inherited and acquired genetic 
mutations. Family-based heritability analysis reported 36% 
of pancreatic cancer was due to genetics. FPC kindreds 
and patients affected by certain genetic syndromes, for 
example HP, PJS, HBOC, FAMMM, and HNPCC, are at 
particularly high risk of pancreatic cancer. About 15–20% 
of FPC are caused by germline mutations in one of the 
established pancreatic cancer gene (BRCA2, ATM, PALB2, 
PRSS1, STK11, BRCA1, CDKN2A, MLH1, MSH2, MSH6, 
and PMS2). The genetic basis of susceptibility underlying 
the majority of FPC cases, however, remains unexplained. 
To date, GWAS of pancreatic cancer have discovered 16 
low-risk susceptibility loci in European populations and 5 
in Asian populations, many of which had strong biological 
plausibility. Together, these GWAS loci explained <5% of 
pancreatic cancer. Screening, surveillance and management 
guidelines for genetically high-risk individuals are currently 
evolving. DNA-damaging related agents are promising in 
treating pancreatic cancer caused by mutations in BRCA1, 
BRCA2, PALB2 or ATM genes. Identification of disease-
causing genes can aid in the characterization of individuals 
at highest genetically defined risk in which effective 
prevention approach can be developed.
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