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Introduction

Pancreas cancer represents the third highest cause of 
cancer-related death in the United States and will affect an 
anticipated 53,670 patients (1). The majority of patients 
with pancreas cancer are diagnosed with metastatic disease, 
and treatments are based in systemic chemotherapy. With 
the approval of new chemotherapy regimens, including 
the 5-fluorouracil-based combination with irinotecan 
and oxaliplatin (FOLFIRINOX) and the combination of 
gemcitabine and albumin-bound paclitaxel, several reports 
note overall survival measuring up to 2 years and greater 
with systemic therapy alone (2-6). While these benefits are 
tangible for many patients, the improvements with systemic 
chemotherapy remain incremental. Immunotherapy has 
changed the way we treat metastatic disease in many solid 
tumors, including melanoma and lung cancer, bringing 
durable responses to many of these patients (7-9). To 
understand whether immunotherapy has a role in the 
treatment paradigm of pancreas cancer, many ongoing 
studies are evaluating the following agents as single agents 
and in combination: immune checkpoint inhibitors, small 
molecule inhibitors, stromal modulating agents, and 
genetically engineered and modified T cells. Genetically 
modified T cells are changing the way we approach and 
treat hematologic malignancies, and much research is 

ongoing to understand if this technology can be used to 
treat solid tumors as well. The focus of this review is to 
describe the underlying biology of T cell therapy and 
ongoing T cell therapy studies in pancreas cancer. 

Adoptive T cell transfer 

Adoptive T cell therapy exploits the patient’s own immune 
system. After a patient’s own T cells are harvested, the 
T cell receptor can be modified to recognize a specific 
tumor antigen, expanded, and then reinfused into a patient, 
allowing the patient’s own T cell to target a specified 
antigen within the context of the patient’s own self major 
histocompatibility complex (MHC). T cells comprise a 
critical arm of the immune system to identify and adapt 
to non-self-antigens and targets. Through identification 
of non-self-antigens, T cell receptors are activated and 
then stimulated to proliferate, develop into effector cells, 
and initiate cytolysis against the target cell (10). T cell 
receptors are comprised of an alpha and beta heterodimer 
to recognize non-self-antigen presented by the matched 
MHC and are further stimulated through the associated 
CD3 complex composed of the zeta-zeta homodimer and 
heterodimers of epsilon-gamma and epsilon-delta (10). 

This adoptive T cell therapy demonstrated promise in 
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both preclinical and clinical studies using T cells targeting 
MUC1, an antigen present on pancreas cancer cells, in an 
HLA-independent fashion. In one study, MUC1-specific 
T cells were generated via exposure and stimulation of 
a patient’s harvested T cells with a pancreas cancer cell 
line expressing MUC1. These MUC1-targeted T cells 
demonstrated in vitro activity against multiple pancreas 
cancer cell lines (11). In a related study in which 20 patients 
with unresectable or recurrent pancreas cancer were treated 
with these MUC1-targeted T cells, five experienced stable 
disease, and one patient experienced a complete response. 
Mean survival time was 9.8 months (12).

First generation chimeric antigen receptor T cells

In an effort to avoid the MHC restriction needed for 
conventional T cell receptor activation, T cells can be 
transduced with genes encoding a chimeric antigen receptor 
(CAR), which includes both an extracellular binding domain 
and an intracellular activation domain often using the CD3 
T cell activation domain. This extracellular binding domain 
includes an antibody recognizing tumor antigens, thus 
avoiding the MHC restriction needed for conventional T cells 
and allowing for the engineering of CAR T cells to express 
receptors specific for many different tumor antigens (10).  
By transducing both a CAR and a T cell activation domain, 
these first-generation CAR T cells identify and attack 
tumor antigens and also expand with the help of T cell 
activation through the CD3 complex. CAR T cells are 
then infused back into a patient to stimulate an immune 
response against the target antigen. Additionally, tumor 
lysis may result in cytokine production, further stimulating 
an immune response (13). Although first generation CAR 
T cells have shown some ability to persist and cause anti-
tumor activity, initial studies demonstrate that anti-tumor 
activity, expansion, and persistence are sub-optimal (14-16).  
To combat these challenges, first generation CAR T cells 
have been modified with the addition of co-stimulatory 
molecules to create so-called second-generation CAR T cells. 

Second generation chimeric antigen receptor T cells 

Second generation CAR T cells are further modified 
with the addition of a second co-stimulatory cytoplasmic 
signaling domain such as 41-BB (also known as CD137), 
OX40 (a l so  known as  CD134) ,  CD28,  inducible 
costimulator (ICOS), and DAP10 (17-28). Stimulation of 
these costimulatory intracytoplasmic domains with CAR 

activation by tumor antigen allows production of IL-2 
and other stimulatory cytokines to facilitate activation and 
expansion of these CAR T cell populations, as demonstrated 
pre-clinically through increased IL-2 production after 
antigen binding to a CD28-derived-CD3 zeta CAR 
compared to decreased IL-2 production with antigen 
binding to a CAR T cell without CD28 (27,29-31). 

Promising responses in CD19 expressing hematologic 
malignancies

Thus far, CAR T cells have been evaluated most extensively 
in CD19 expressing B cell malignancies with most promise 
in B-cell acute lymphoblastic leukemia (B-ALL). The 
largest experience to date in adults has been reported by 
Park and colleagues in which 37/45 patients experienced 
morphologic complete response, and 13/37 were able to 
undergo an allogeneic hematopoietic stem cell transplant. 
Six-month overall survival did not differ between patients 
who did or did not undergo allogeneic hematopoietic 
stem cell transplant. Most common toxicities in this 
group included transient B-cell aplasia, cytokine release 
syndrome (CRS), and neurologic toxicities (32-34). At 
Fred Hutchinson Cancer Research Center, 24/26 evaluable 
patients with B-ALL achieved a complete response (35). 

CD19-targeted CAR T cells have shown promise in 
pediatric B-ALL studies as well. Investigators from University 
of Pennsylvania have demonstrated that 50/53 patients 
experienced a morphologic complete response (36,37).  
Investigators from the National Cancer Institute have 
shown that 14/20 patients with relapsed B-ALL achieved 
and maintained a complete response as well (38). At 
Memorial Sloan Kettering Cancer Center, initial results 
have demonstrated that 2/4 patients with relapsed B-ALL 
experienced a complete response with treatment with 
CD19-targeted CAR T cells (39). 

Many ongoing studies are evaluating the efficacy of 
CAR T cells in patients with other CD19 expressing B cell 
malignancies, including multiple myeloma, non-Hodgkin 
lymphoma, and chronic lymphocytic leukemia (40).  
Recently completed studies evaluating CAR T cells in 
other CD19 B cell malignancies have demonstrated mixed 
responses (40,41).

Emerging data and experience in solid tumors

Given the promising responses seen with CAR T cells in 
CD19 expressing hematologic malignancies, efforts are 
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underway to understand whether this emerging technology 
can be applied to solid tumors. CAR T cells have been 
created to target many tumor antigens in various solid 
tumors including pancreas cancer, mesothelioma, ovarian 
cancer, renal cell carcinoma, and melanoma (15,42-47). 
Although few studies with adoptive T cell therapy in 
pancreas cancer have been completed thus far, ongoing 
studies for patients with pancreas cancer are evaluating 
many tumor antigens, such as carcinoembryonic antigen 
(CEA), mesothelin, and others as described below. 

CEA

Routinely used as a serum marker for monitoring patients 
with gastrointestinal malignancies, CEA is also present on 
the tumor cell surface of 75% of pancreas cancers (48-50).  
Preclinical studies have demonstrated that CAR T cells 
targeting CEA have a cytotoxic effect on a pancreas 
cancer mouse model (51). Although final results have not 
yet been published, a CAR T cell study evaluating CEA-
targeted CAR T cells was halted early due to respiratory 
complications, highlighting the risks and caution needed 
when pursuing these studies (52,53). Several studies are 
ongoing to better understand the safety and maximum 
tolerated dose of CAR T cells targeting CEA through 
both systemic administration (NCT02349724 Southwest 
Hospital China) and various local means of administration 
to the liver (NCT02850536 Roger Williams Medical 
Center, NCT 02959151 Shanghai Cancer Hospital). 

Mesothelin 

Mesothelin is expressed in many tumors, including 85–90% 
of mesotheliomas and 80–85% of pancreas cancers (54-57).  
Mesothelin’s utility as a practical target for immune 
targeting was confirmed in a phase 1 study in which an anti-
mesothelin immunotoxin SS1P was administered to patients 
with mesothelin-expressing tumors (58). Of 33 patients 
treated, 23 experienced disease control with 4 patients 
having a minor response and 19 patients having stable 
disease (58). In pancreas cancer, expression of mesothelin 
is present primarily in pancreas adenocarcinomas but not 
in normal tissue (59,60). Mesothelin is associated with 
tumor invasion (59,60). In preclinical studies, CAR T cells 
targeting mesothelin demonstrated response in pancreas 
cancer cell lines (61). 

Preliminary results presented by Beatty and colleagues 

demonstrated the feasibility of mesothelin-specific CAR 
T cell therapy for patients with solid tumors, including 1 
with metastatic pancreas cancer (62). Follow-up data noted 
that 2 out of 6 patients experienced stable disease, including 
1 with stable disease for greater than 4 months while off 
cytotoxic chemotherapy (63) (NCT01897415 University of 
Pennsylvania). Final results are pending. 

Many ongoing studies are evaluating the role of 
mesothelin-targeted CAR T cells in pancreas cancer 
(NCT01583686 National Cancer Institute, NCT02159716 
University of Pennsylvania, NCT02465983 University 
of Pennsylvania/University of California, San Francisco, 
NCT03054298 University of Pennsylvania, NCT02930993 
China Meitan General  Hospital ,  NCT 02580747 
Chinese PLA General Hospital). Novel approaches of 
locally administered CAR T cells are also being further 
investigated (NCT02706782, Renji Hospital in China, 
NCT01897415, NCT02706782, NCT02959151 Shanghai 
Cancer Hospital). Additional studies are also ongoing 
evaluating the role of mesothelin-targeted CAR T cells in 
mesothelioma and in breast cancer with pleural involvement 
(NCT02414269 Memorial Sloan Kettering Cancer Center, 
NCT02792114 Memorial Sloan Kettering Cancer Center). 

Prostate stem cell antigen

Harnessing the overexpression of prostate stem cell 
antigen (PSCA) in pancreas cancer, PSCA-targeted CAR 
T cells demonstrated promise in an in vivo mouse model 
of pancreas cancer, supporting further evaluation of this  
target (64,65). A novel CAR T cell construct, BPX-601, has 
been developed with a variable chain fragment targeting 
PSCA and with an inducible co-stimulatory domain 
activated by the small molecule rimiducid. The safety of 
BPX-601 is being evaluated in an ongoing clinical trial 
(NCT02744287 Bellicum Pharmaceuticals). 

Other antigens

CD24 
CD24, a marker of cancer stem cells, is also being evaluated as 
a therapeutic target in pancreas cancer. Given the prevalence 
of early disseminated metastases and the treatment refractory 
nature of this disease, cancer stem cells are thought to play 
a role in the development and proliferation of pancreas  
cancer (48,66). Preclinical studies have demonstrated that 
CD24-targeted CAR T cells caused tumor eradication in a 
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xenograft model of pancreas cancer (67). 

MUC1
MUC1 is overexpressed in pancreas cancer, and preclinical 
studies have demonstrated promising responses in vivo 
studies of MUC1-targeted CAR T cells in mice (68,69). A 
case report was presented of minimal toxicity and tumor 
necrosis after intra-tumoral administration of MUC1-
targeted CAR T cells in a patient with MUC1-expressing 
seminal vesicle cancer (70). Studies are ongoing to evaluate 
the safety and efficacy of MUC1-targeted CAR T cells 
(NCT02587689 PersonGen BioTherapeutics Co., Ltd., 
NCT02617134 PersonGen BioTheraputics Co,. Ltd.). 

MUC16
MUC16, also known as CA125, is a well-known marker 
in gynecologic malignancies and is also overexpressed in 
pancreas cancer cell lines and not expressed in normal 
pancreas (71). In vitro studies have demonstrated antitumor 
activity and eradication in a mouse model of peritoneal 
cancer treated with MUC16-targeted CAR T cells targeting 
MUC16 (72). Studies are ongoing evaluating the safety and 
maximum tolerated dose of MUC16-targeted CAR T cells 
in patients with gynecologic cancers (73). 

Many studies are ongoing for patients with pancreas 
cancer evaluating CAR T cells in pancreas cancer against 
various other targets, including CD133, CD70, epidermal 
growth factor receptor (EGFR), ERBB2, natural killer 
receptors, and others (Table 1). 

Challenges and opportunities in pancreas 
cancer

Stromal modulation

Several features of pancreas cancer contribute to the 
chemoresistance and poor prognosis of pancreas cancer. One 
such feature is the dense stroma surrounding pancreas cancer, 
which is thought to limit chemotherapy delivery to the 
tumor. The stroma itself represents a promising therapeutic 
target to not only facilitate chemotherapy delivery but also 
to propagate a more favorable tumor microenvironment, and 
many studies are ongoing or have been recently completed to 
evaluate the role of stromal targeting in this population. For 
instance, a recent study of the combination of chemotherapy 
and PEGPH20 targeting hyaluronidase demonstrated 
promising activity, and several studies are ongoing evaluating 

this combination (NCT02715804, NCT02487277, NCT 
02921022) (74,75). Heparanase was also a promising target, 
although a recently completed study of the heparanase 
targeted drug M402 with gemcitabine and nab-paclitaxel 
was recently stopped early due to futility (76). Chemokine 
receptors, such as CXCR2, have also been a promising 
target. A recent study of PF04136309, a CXCR2 antagonist, 
with FOLFIRINOX demonstrated promising results, and 
CAR T cells co-expressing chemokine receptors are being 
explored to enhance CAR T cell trafficking to the tumor 
(77-79). Building on these strategies, several CAR T cell 
studies are also targeting the tumor stroma. For instance, 
fibroblast activation protein (FAP) is expressed on stromal 
cells, and FAP-targeted CAR T cells have been developed 
and demonstrated tumor activity in mouse models but 
also off-tumor on-target toxicity, which may limit further 
evaluation (80).

Immunosuppressive tumor microenvironment

Another challenge in pancreas cancer is the creation of 
an immunosuppressive tumor microenvironment that 
allows pancreas cancer to evade the immune system. First, 
pancreas cancer is thought to harbor an increased number 
of T regulatory cell populations, partly via increased 
expression of chemokine receptor type 5  (CCR5). Increased 
presence of T regulatory cells is thought to contribute to T 
cell inhibition via increased inhibitory cytokine production 
such as TGF-beta and IL-10 (48,81,82). Also, upregulation 
of inhibitory ligands such as programmed death-1 (PD-1)  
results in T cell inhibition. Single agent use of immune 
checkpoint inhibitors has resulted in durable and dramatic 
clinical response in many cancers, including lung cancer, 
melanoma, renal cell carcinoma, and others. While single 
agent use of checkpoint blockade has been underwhelming 
in pancreas cancer thus far, use of checkpoint blockade 
in combination with CAR T cells may circumvent these  
issues (83). To augment the response of CAR T cells, 
combination therapy with immune checkpoint blockade 
and CAR T cel ls  has  demonstrated restored and 
prolonged efficacy of CAR T cells (84). Consequently, 
novel combinations of immune checkpoint blockade 
with mesothelin-targeted CAR T cells (NCT03182803 
Shanghai Cell Therapy Research Institute, NCT03030001 
Ningbo Cancer Hospital), MUC1 expressing CAR T cells 
(NCT03179008 Shanghai Cell Therapy Research Institute) 
are also ongoing. 
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Table 1 Ongoing or recently completed trials with chimeric antigen receptor T cells in pancreas cancer

Targets
Clinicaltrials.gov 

identifier
Sponsor Status

CD133 NCT02541370 Chinese PLA General Hospital Recruiting

CD70 NCT02830724 National Cancer Institute Recruiting

CEA NCT02850536 Roger Williams Medical Center Recruiting

CEA NCT02416466 Roger Williams Medical Center Ongoing but not recruiting

CEA NCT02349724 Southwest Hospital, China Recruiting

CEA NCT01723306 Roger Williams Medical Center Suspended

CEA NCT00004178 Roger Williams Medical Center Completed

CEA NCT01212887 Cancer Research UK Terminated due to safety concerns

Claudin 18.2 NCT03159819 Changhai Hospital Not yet open

EGFR NCT02873390 Ningbo Cancer Hospital Recruiting

EGFR NCT02862028 Shanghai International Medical Center Recruiting

EGFR NCT03182816 Shanghai Cell Therapy Research Institute Recruiting

EGFR NCT01869166 Chinese PLA General Hospital Recruiting

EpCAM NCT03013712 First Affiliated Hospital of Chengdu Medical College Recruiting

GD2 NCT02992210 Shenzhen Geno-Immune Medical Institute Recruiting

Glypican-3 NCT02932956 Baylor College of Medicine Not yet open

HER2 NCT02713984 Zhi Yang Recruiting

HER2 NCT00924287 National Cancer Institute (NCI) Terminated due to patient death on study

HER2 NCT00889954 Baylor College of Medicine Ongoing but not recruiting

Mesothelin NCT03182803 Shanghai Cell Therapy Research Institute Recruiting

Mesothelin NCT03054298 University of Pennsylvania Recruiting

Mesothelin NCT03030001 Ningbo Cancer Hospital Recruiting

Mesothelin NCT02959151 Shanghai GeneChem Co., Ltd. Recruiting

Mesothelin NCT02930993 China Meitan General Hospital Recruiting

Mesothelin NCT02706782 Shanghai GeneChem Co., Ltd. Recruiting

Mesothelin NCT02580747 Chinese PLA General Hospital Recruiting

Mesothelin NCT02159716 University of Pennsylvania Completed

Mesothelin NCT01897415 University of Pennsylvania Ongoing but not recruiting

Mesothelin NCT01583686 National Cancer Institute (NCI) Recruiting

Mesothelioma NCT02465983 University of Pennsylvania Ongoing but not recruiting

MG7 NCT02862704 Xijing Hospital Recruiting

MUC1 NCT03179007 Shanghai Cell Therapy Research Institute Recruiting

MUC1 NCT02587689 PersonGen BioTherapeutics (Suzhou) Co., Ltd. Recruiting

Natural killer receptor NCT03018405 Celyad Recruiting

PSCA NCT03198052 Second Affiliated Hospital of Guangzhou Medical 
University

Not yet open

PSCA NCT02744287 Bellicum Pharmaceuticals Recruiting

CEA, carcinoembryonic antigen; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; PSCA,  
prostate stem cell antigen; EpCAM, epithelial cell adhesion molecule.
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Another approach has been to further modify CAR 
T cells to thrive in an immunosuppressive environment. 
Mohammed and colleagues evaluated the role of the 
immunosuppressive cytokine IL-4. They created a molecule 
combining the IL-4 receptor to the endodomain of the 
immune-activating IL-7 receptor. Transduction of this 
molecule into a PSCA-targeted CAR T cell allowed 
the CAR T cell to persist and thrive in an IL-4 rich 
microenvironment using an IL-4 producing prostate stem 
cell antigen (PSCA)-expressing tumor cell line (85). 

Similarly, use of other immune modulatory agents such 
as tumor necrosis factor alpha-receptor antibodies and 
diabetes medication such as metformin and rosiglitazone 
are novel therapeutic approaches and may provide 
opportunities to be combined with CAR T cell to facilitate 
improved activity of CAR T cell (86-88). 

Safety concerns with chimeric antigen receptor T cells

While CAR T cell therapy has provided much excitement in 
the hematologic malignancies and promise in solid tumors, 
several drawbacks and concerning toxicities have also 
arisen. The biggest challenge in application of CAR T cell 
technology to solid tumors is that antigens present on the 
tumor cell surface are nearly always present in some level 
on normal tissue as well, increasing risk of autoimmune 
on-target toxicity. Also, there have been several treatment-
related deaths on clinical trials using CAR T cells in 
hematologic malignancies, related to neurologic toxicity 
and cerebral edema (89). Finally, CRS remains a significant 
concern and requires monitoring with an experienced team 
and frequently monitoring in an intensive care unit setting 
due to the risks of rapid progression and decline (41,90). 

Many strategies have been developed to help monitor 
and treat these side effects, particularly among centers 
treating a higher volume of these patients.  First, 
transduction of a “suicide” gene into the CAR T cell is 
often used. For instance, transduction of the epidermal 
growth factor receptor into the CAR T cell allows for 
apoptosis with administration of cetuximab, an FDA-
approved drug targeting EGFR which can be well-tolerated 
and with a well-known safety profile. Use of the IL-6 
receptor antagonist tocilizumab is also used to help treat 
CRS. Most important though is a high degree of suspicion 
for toxicity, early intervention, and appropriate use of 
reversal mechanisms such as tocilizumab or triggers for the 
suicide gene used in that CAR T cell construct (41,90). 

Future directions

Pancreas cancer remains a disease treated by systemic 
chemotherapy primarily, and novel treatment strategies 
are needed. Immunotherapy in the form of checkpoint 
inhibitors has revolutionized the way we treat lung 
cancer, melanoma, and several others, and T cell therapy 
has similarly provided dramatic and frequently durable 
improvements in a challenging population of patients 
with refractory CD19+ hematologic malignancies. We 
remain hopeful that T cell therapies will provide a novel 
opportunity for patients with pancreas cancer given the 
multitude of targets and opportunities for both local 
administration of CAR T cells and combination therapy 
with other immunotherapies and stromal modulating 
agents. 
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