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Introduction

Advances in radiation delivery in the last decade have 
driven substantial improvement in physical precision of 
radiotherapy (RT) targeting of tumours. With intensity 
modulated radiotherapy (IMRT), there is now the 
ability to shape deposition of radiation doses around 
concave contours, thereby ensuring dose intensity to 
the tumour while limiting exposure of adjacent normal 
tissues. Likewise, image guided radiotherapy (IGRT) 
with daily cone beam imaging has added another layer 
of physical precision. Both technologies are culpable for 
the enhanced therapeutic ratio of RT; clinical evidence 
from prospective trials and observational audits have 
indicated significant improvements in disease control, 
survival, and reduction of normal tissue complications (1,2). 

More recently, proton therapy has been proposed as an 
even more superior technology for RT delivery through 
exploiting the Bragg’s peak characteristics of the proton 
beam; this yields the theoretical advantage of focused 
dose intensity at the tumour, while further limiting the 
exposure to normal tissues due to the sharp dose fall-off. 
It is through the advent of these advanced technologies 
that has partly motivated the design of RT fractionation 
schemes that are intended to achieve “tumour ablation”; 
these regimes exploit the incremental biological effects of 
large doses per RT fraction in tumours like prostate and 
breast cancers that are intrinsically sensitive to fraction size 
variation (3,4). Clinical evidence supporting the efficacy of 
such stereotactic ablative (radiosurgical) regimes is being 
presented by several accompanying reviews in this Chinese 
Journal of Clinical Oncology Special Issue. 
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Nonetheless, against the background of technological 
advances, it is arguable that recent clinical gains from 
improved physical precision have been less impressive. 
For example, comparisons of clinical outcomes of patient 
cohorts who had been treated with either proton therapy 
or IMRT have not been conclusively in favour of protons 
(5-8). It is therefore plausible to consider that subsequent 
therapeutic strategies will require a marriage of physical and 
biological precision in order to achieve the next substantial 
gain in precision radiation oncology. It is also coincidental 
that simultaneous with the progress in RT technologies, 
there are now high throughput next generation sequencing 
(NGS) techniques that have improved the efficiency and 
quality of molecular profiling of human tissues. This has 
led to the generation of robust datasets on molecular 
taxonomies of several human cancers by large collaborative 
consortiums like the International Cancer Genome 
Consortium (ICGC) and The Cancer Genome Atlas 
(TCGA) (9-12). Apart from providing a molecular taxonomy 
on individual cancers (thereby prompting the revisit of our 
conventional approach of clinical stratification by the TNM 
stage classification system), other insights gained from these 
molecular profiling studies include discovery of novel driver 
mutations that are biomarkers of adverse prognosis and 
therapeutic resistance. The latter would imply a predictive 
biomarker that is potentially ‘druggable’ for synergism 
with standard therapies to counter clonal resistance and 
tumour recurrence (13,14). This review thus aims to discuss 
the scientific rationales and considerations underpinning 
various precision RT strategies, with specific focus on 
head and neck and prostate cancers. Here, we will first 
review the current literature on the molecular landscape 
of these cancers; next, we will discuss the clinical relevance 
of the molecular features; finally, we will suggest possible 
approaches of incorporating matched tumour and germline 
molecular profiling in designing precision RT strategies in 
the treatment of these cancers.

Search strategy

We searched the PubMed and MEDLINE databases for 
articles published in English from 01 January 2000 to 30 
December 2016 with the keywords ‘molecular’, ‘genomics’, 
‘epigenomics’, ‘biomarkers’, ‘prognostic’, ‘predictive’, 
‘radiation’, ‘radioresistance’, ‘head and neck’, ‘prostate’, 
‘cancers’, ‘carcinoma’, ‘radiotherapy’, ‘radiosurgery’, 
‘stereotactic body radiotherapy’, and ‘ablative therapy’. 
Articles were selected based on relevance, with priority 

given to highly-cited articles, and articles written in English. 
Conference abstracts were also reviewed, and considered if 
they reported statistical methods and hazard ratios (HR), 
with corresponding confidence intervals (CI) and P values. 
Articles that preceded the search time-frame were also 
included if they were highly regarded seminal work. 

Molecular characterisation of head and neck 
and prostate cancers

Epidermal growth factor receptor (EGFR) amplification 
was among the initial oncogenic driver events that 
were characterised in head and neck squamous cell 
cancer (HNSCC) (15-17). As shown by Ang et al. and 
several others, overexpression of EGFR was common in 
these tumours, and importantly, predicted for inferior 
locoregional tumour control following primary RT. 
Targeting of this receptor through anti-EGFR antibody 
(cetuximab) was able to inhibit the molecular processes 
contributing to tumour aggression, thereby improving 
clinical outcomes in patients treated with combination 
cetuximab-RT (18). However, More recently there is 
an emergence of a new phenotype of HNSCC that is 
associated with human papillomavirus (HPV) infection 
(19-21). From large-scale epidemiological studies, it 
was observed that while different HPV-serotypes (-16, 
-18, and others) have been implicated in head and neck 
carcinogenesis, oncogenic potential differed between 
the serotypes, and there is a tropism of HPV to the 
oropharynx, albeit HPV has also been detected in 
other head and neck anatomical sub-sites. Of note, the 
association is strongest between HPV-16 infection and the 
onset of oropharynx squamous cell carcinoma (OPSCC); 
it is also in HPV+ OPSCC where these patients have a 
distinctly more favourable prognosis compared to HPV+ 
HNSCC of other sites and HPV− HNSCC (22,23). While 
the oncogenic potential of HPV-16 can be attributed to 
the expression of E6 and E7 proteins, which are known 
to inhibit TP53 and RB1, respectively, the mechanistic 
bases underpinning the favourable prognosis and optimal 
response of HPV+ OPSCC to RT are less definitive. 
Disruption of cell cycle checkpoint mechanisms, DNA 
repair and damage responses have been proposed to 
account for the increased radiosensitivity of these  
tumours (24). In the landmark report by TCGA on 279 
HNSCCs, it was observed that specific mutational events 
may be enriched in HPV+ and HPV− HNSCC (activated 
PIK3CA (56% vs. 34%) and FGFR3 (11% vs. 2%), loss 
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of TRAF3 (22% vs. 1%) in HPV+ tumours; EGFR, 
FGFR1, CCND1, CDK6, MYC, IGF1R, FAT1 in HPV− 
tumours). However, these events alone do not fully explain 
the discordant natural histories of these tumours (12).  
Other common events such as inactivating mutations in 
NOTCH1 were also observed, regardless of HPV status, 
which hints at a novel function of NOTCH1 as a tumour 
suppressor rather than an oncogene in HNSCC (12,25,26). 
From a broader genome-wide perspective, intra-tumoral 
and inter-individual molecular heterogeneity of HNSCC 
were also appreciable from these landmark sequencing 
studies, and add prognostic information to conventional 
clinical indices (27).

Unlike HNSCC, the majority of localised prostate 
cancers harbour a paucity of somatic nucleotide variants 
(SNVs); in an analysis of 200 whole genome shotgu 
(WGS) and 277 whole exome sequences (WES), Fraser  
et al. reported SNV frequencies of less than 10% for SPOP, 
MED12, TP53, FOXA1 in non-indolent prostate cancers 
with similar clinical risk profiles (28). Rather, the molecular 
taxonomy of localised prostate cancers is better defined by 
copy number aberrations (CNA), structural chromosomal 
hypermutations (chromothripsis and kataegis) and 
rearrangements. In particular, Lalonde et al. showed that 
localised prostate cancers could be classified by global 
CNA and gene rearrangement profiles into four subclasses, 
independent of Gleason’s score (GS) (29). The significant 
intra-tumoral spatial genomic heterogeneity further 
highlights the biological complexity of multifocal prostate 
cancers that could not be discerned by conventional GS 
and histomorphology (30,31). Beyond the variation in 
global CNA profiles, prostate cancers are also prone to 
recurrent gene-specific CNAs such as amplification in 
CMYC, and losses in PTEN, RB1, TP53, CHD1, CDH1, 
and NKX3-1 (32). Among recurrent gene rearrangements, 
TMPRSS2: ERG somatic fusion is most common, occurring 
in 50% of prostate cancers. Nonetheless, novel inversions 
also have been reported; Fraser et al. described a recurrent 
inversion at the PTEN gene locus affecting downstream 
gene expression

 
(28). In a separate cohort of NCCN-

defined high-risk advanced tumours, Baca et al. presented a 
novel concept of “chromoplexy”, whereby inter-dependent 
DNA translocations and deletions occur to dysregulate 
prostate cancer genes in a coordinated manner

 
(33). 

Finally, the tumour microenvironment within the prostate 
gland is also prone to effects of hypoxia and co-occurrence 
of subpathologies such as intraductal and cribriform 
variants, which raises the possibility of interdependency 

between the intrinsic tumour molecular characteristics 
and the surrounding microenvironment

 
(34,35). Taken 

together, the findings of these studies have provided us 
with a profound insight on several novel biology in these 
and other human cancers, in hope that we can eventually 
link these molecular indices to tumour aggression and 
therapeutic resistance. 

Clinical relevance of somatic and germline 
mutations in HNSCC and prostate cancers

Treatment recommendation of HNSCC is largely based 
on a risk-adapted approach using conventional clinical 
indices; early stage disease (TNM stages I and II) is 
typically managed with either surgery or RT, while locally 
advanced tumours (TNM stages III and IV) are treated 
with either definitive chemoRT or surgery followed by 
adjuvant therapies (RT or chemoRT). Nonetheless, clinical 
stratification for personalised treatment strategies can 
be achieved with incorporation of molecular indices. An 
illustrative example will be overexpression of EGFR and 
HER2, which are known adverse prognostic biomarkers in 
this disease, and targeted therapeutics such as cetuximab 
and gefitinib are effective in “drugging” this activated 
pathway in HNSCC. Although modest response rates of 
15–20% to either agents in unselected patient populations 
have been reported (36,37), presence of a germline mutation 
in KRAS may be predictive of cetuximab efficacy [HR 
for overall survival (OS) =0.19, P=0.03; progression-free 
survival (PFS) =0.31, P=0.04 in favour of KRAS-variant] (38). 
Separately, tumours eventually acquire resistance to these 
agents through co-occurrence of other gene alterations in 
ERBB2, MET, PIK3CA, PTEN and HRAS

 
(12). Detailed 

characterisation of molecular pathways that are aberrant 
prior to and at the point of resistance would thus provide 
the scientific rationales of novel combinatorial targeted 
therapeutic regimes. 

Assessment of HPV status by immunohistochemical 
staining of its surrogate marker—p16 and/or HPV RNA 
in situ hybridisation (ISH) is routine at present when 
performing histopathological analysis of HNSCCs, even 
though information on prognosis is primarily limited 
to OPSCC (23). Bratman et al. further suggested that 
prognostication power varies between HPV-serotypes; in 
their analysis of 73 HPV+ tumours from the TCGA cohort, 
they observed that HPV-16 was associated with superior 
survival when compared to HPV-other serotypes (39). 
Nonetheless, it is conclusive that the strength of HPV as a 
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prognostic biomarker far outweighs conventional clinical 
indices in HNSCC; of note, a novel stage classification 
system that is unique to HPV+ OPSCC has thus been 
developed (40,41). The enhanced radiation sensitivity 
of these viral-associated tumours has also led to design 
of treatment deintensification regimes, with preliminary 
evidence from few phase II clinical trials supportive of a less 
intensive approach (42-44). Separately, the preponderance 
of distinct mutations like activated PIK3CA in HPV+ 
OPSCC lends itself to the possibility of exploiting 
tumour susceptibility to inhibitors of PIK3CA (buparlisib, 
alpelisib, etc.). 

Likewise in prostate cancers, patient stratification using 
conventional clinical indices alone (CT category, GS, and 
pre-treatment PSA) is imprecise, with 30% of patients 
failing primary surgery or RT (45). On this note, genomic 
instability, CMYC gain, TP53/RB1 deletion are among 
the molecular aberrations that are associated with risks of 
biochemical and metastatic relapses following definitive 
surgery or RT (29,46-48). Dysregulation of non-coding 
genes has also been proposed to portend for unfavourable 
prognoses; expression of a long non-coding RNA, 
SChLAP1, which is specifically expressed in prostate tissue, 
has been described in lethal prostate cancers (49,50).

Apart from providing information on lethality of these 
cancers, mutations such as somatic NBN amplification and 
germline HSD3B1 activating variants have been separately 
reported to predict for RT-resistance [5-year biochemical 
relapse-free rate (bRFR) of 46% (gain) vs. 77% (no gain), 
P=0.00067 in IGRT cohort; no difference in prostatectomy 
cohort] and insensitivity to androgen suppression (median 
PFS of 6.6-year in homozygous wild type vs. 4.1-year in 
heterozygous variants vs. 2.5-year in homozygous variants, 
P=0.011), respectively (51); these biomarkers have potential 
utility in refining treatment recommendations in patients 
who have otherwise similar clinical risk profiles. In the 
same vein, Zhao et al. performed unsupervised hierarchical 
clustering of transcriptomes from 3,782 prostate cancers, 
and observed similar profiles akin to oestrogen-sensitive 
breast cancers: luminal A, luminal B, and basal (52). 
However, in contrast luminal B signature conferred the 
worst prognoses in prostate cancer when compared to basal 
and luminal A subtypes (10-year bRFR of 29% vs. 39% vs. 
41%; 10-year distant metastasis-free survival =53% vs. 73% 
vs. 73%; 10-year prostate cancer-specific survival =76% 
vs. 86% vs. 89%, respectively); this is posited to be due to 
intrinsic insensitivity to androgen suppression in luminal B 
tumours. 

More recently, mutations in DNA repair genes have 
also been implicated in the development of aggressive 
prostate cancer and response to targeted therapeutics; a 
prime example is the anti-tumour activity with inhibition of 
PARP1 in metastatic prostate cancers harbouring germline 
and somatic mutations in DNA repair genes, particularly 
in those involved in homologous recombination (53,54). 
Interestingly, germline mutations in DNA repair genes 
were also more frequent among patients with aggressive 
metastatic disease compared to their indolent counterpart 
(11.8% vs. 4.6%), with BRCA2 (5.3%) being the most 
frequent aberration (54). These findings justify the approach 
of molecular profiling of paired prostate tumour-normal 
tissues, in order to determine the optimal therapeutic 
strategy for the individual patient (Table 1) (55-65). 

Optimising RT therapeutic ratio: germline genetic 
predictors of normal tissue toxicities

Apart from inter-individual heterogeneity in tumour 
response to RT, a wide variation also exists in normal 
tissue RT-response between non-syndromic individuals, 
which are unexplained by clinical and treatment parameters 
(66,67). It is estimated that up to 60% of inter-individual 
heterogeneity in normal tissue RT-sensitivity may be due 
to intrinsic genetic susceptibility, likely influenced by 
low penetrance allelic variation (68). Identifying genetic 
signatures of normal tissue RT-sensitivity could therefore 
offer another paradigm of precision RT; de-escalating 
RT doses in individuals assessed to be RT-sensitive (by 
signature) and intensifying treatment in patients who are 
determined to be less prone to RT-induced normal tissue 
toxicities. There are now several genome-wide association 
studies (GWAS) that have investigated for predictive single 
nucleotide polymorphism (SNP)-based signatures of specific 
RT-induced normal tissue end-points: Radiogenomics: 
Assessment of Polymorphisms for Predicting the Effects of 
Radiotherapy (RAPPER), RADIOGEN, Gene-PARE and 
Cross Cancer Institute (CCI) (69-73) (Table 2); notably, 
SNPs in TANC1 and XRCC1 have been reported to predict 
for erectile dysfunction and breast fibrosis, respectively 
(71,72). While we await validation in larger cohorts (73,74), 
other assays including radiation-induced lymphocyte 
apoptosis (RILA) have been prospectively validated to 
predict for severe reactions following breast RT (75,76). 
Going forward, it is plausible to consider a clinical pathway 
that personalises RT doses for each patient based on 
profiling data of matched tumour and normal tissue RT-
sensitivity in the same patient. 
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Designing biomarker-directed therapeutic 
strategies in head and neck and prostate 
cancers

Given the RT-sensitivity and favourable prognosis of 
HPV+ OPSCC, the feasibility of RT dose de-escalation 
were formally tested in small single-arm phase II studies, 
with encouraging preliminary results (77). In two of the 
studies that have been reported, response to induction 
chemotherapy was employed as a method of stratifying 
patients to a lower RT dose of 54 Gy, while simultaneously 
targeting occult metastases with the upfront administration 
of systemic therapy (43,44). While the systemic therapy 
regimes varied in both studies (three cycles of induction 
cisplatin, paclitaxel, cetuximab and concurrent cetuximab 
in ECOG 1308; two cycles of induction carboplatin, 
paclitaxel and concurrent paclitaxel in the UCLA trial), the 
study investigators reported 2-year PFS of 80% and 92%, 
respectively. 

Treatment intensification strategies in HPV− HNSCC 
have included testing the efficacy of combination hypoxia 
modifiers (nimorazole, tirapazamine) and RT, with the 
aim of sensitising radioresistant hypoxic clones in these 
tumours. The background to this strategy was in part based 
on a post-hoc analysis of p16 expression as a surrogate for 
HPV-status in the DAHANCA-5 randomised controlled 
phase III trial of nimorazole-RT compared to RT  
alone (78); the study investigators observed that negative 
expression of p16 was predictive of nimorazole efficacy 
(HR of loco-regional failure with nimorazole 0.69, p16- 
vs. 0.93, p16+) (79). This strategy is currently being 
formally investigated in a randomised controlled phase III 
trial (ClinicalTrials.gov, NCT01880359) (80). Another 
rationale for treatment intensification in this adverse 
subgroup involves the targeting of occult metastases. 
To this end, investigators have examined the role of 
maintenance afatinib (an EGFR and HER2 tyrosine kinase 
inhibitor) following chemo-RT in two large randomised 
studies (LUX-2 and LUX-4), both of which unfortunately 
failed to demonstrate an efficacy of the targeted agent 
in this setting (81). Novel regimes are therefore needed, 
and we await the results of ongoing immunotherapy 
trials [ClinicalTrials.gov, NCT02952586 (JAVELIN), 
NCT02777385, NCT02764593 (RTOG 3504)].

A similar approach could also be applied in the treatment 
of localised prostate cancer; while most tumours are 
indolent in nature, and could be considered for single 
modality surgery or RT without dose escalation, those 
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harbouring aggressive features of SChLAP1 expression and 
genomic instability ought to be considered for treatment 
intensification with second generation anti-androgen 
therapies (enzalutamide and abiraterone). In addition, 
biomarkers that are predictive of RT- (NBN amplification) 
and androgen-sensitivity (HSD3B1 variant) could also be 
incorporated into a clinical decision making tool comprising 
of combinatorial clinical indices and prognostic biomarkers; 
for example, in individuals with prostate tumours 
harbouring a constellation of hypoxia, subpathologies, and 
genomic instability (46), these men should be referred for 
treatment intensification clinical trial protocols, which 
could embed additional stratification measures to (I) 
surgery or RT based on an RT-sensitivity signature, and (II) 
chemotherapy or hormonal therapy for targeting systemic 
disease depending on their germline HSD3B1 status 
(Figure 1). In the metastatic setting, germline and tumour 
sequencing should be performed, since this could help 
direct patients to treatment with PARP1 inhibitors (olaparib, 
etc.) in the presence of mutations in DNA repair genes (53). 

Nonetheless, there are several caveats with such precision 
approaches. Foremost, large-scale prospective validation is 
required for several of these molecular biomarkers to verify 
the magnitude of association with clinical outcomes. Next, 
standardisation of the molecular assays to achieve robust 
reproducibility and reliability is paramount to ensuring 
consistency of the assay read-out across multiple centres. 
Lastly, a challenge yet to be adequately addressed relates to 
the impact of intratumoral heterogeneity on the accuracy 

of genotype-phenotype (82), and if liquid biopsies represent 
the solution to more invasive and costlier multiregional 
tumour sampling.

Combinatorial approach of precision molecular 
profiling and ablative stereotactic RT 

While the role of stereotactic body RT (SBRT) or 
radiosurgery (SRS) was initially intended for optimisation 
of symptom palliation, there is an emerging concept among 
clinicians to exploit SBRT and SRS in targeting isolated 
metastases, such that these patients harbouring a “low” 
burden of systemic metastases are potentially “cured” if 
the metastatic tumour clones are eradicated. Supportive 
evidence for such a disease state can be drawn from clinical 
examples in colorectal, renal, and soft tissue cancers (83). 
Nonetheless, current methods of stratifying for these 
favourable patients are imprecise, and do not incorporate 
indices indicative of tumour biology; they often rely on 
assessment for (I) number of metastatic lesions; (II) sites 
of metastasis; (III) disease-free interval; and (IV) control 
of primary disease. In this instance, one could identify the 
relevance of a molecular signature for an oligometastatic 
state, which would enhance our ability to identify patients 
with truly limited disease. Of note, liquid biopsies that 
rely on quantification and characterisation of circulating 
tumour cells (CTCs) and cell-free tumour DNA (cfDNA) 
could fulfil this clinical purpose, and have demonstrated 
preliminary success in early-stage colorectal and lung 

Figure 1 Illustrative example of a personalised management strategy based on combinatorial prognostic and predictive biomarkers in men 
with localised prostate cancers.
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cancers (84,85). In the larger TRAcking Cancer Evolution 
through therapy (Rx) (TRACERx) study, Abbosh et al. 
reported on a novel technology that could detect cfDNA in 
100 early-stage lung cancer patients, coupled with a high 
fidelity in phylogenetic analyses to track clonal evolution 
that could predict resistance to adjuvant chemotherapy 
and risk of recurrence (84). Separately, Tie and colleagues 
demonstrated that detection of tumour-associated 
mutations in cfDNA was predictive of a benefit with 
adjuvant chemotherapy in patients with stage 2 colorectal 
cancer following surgery (85). Based on these examples, it 
is plausible to consider the utility of this technology for a 
more accurate stratification of patients with oligometastatic 
disease, who would be ideal candidates for more aggressive 
intervention.

Precision molecular profiling could also be useful for 
evaluating tumour immunogenicity. As discussed elegantly 
in the companion review article by Tharmalingam and 
Hoskin (86), there is good level of evidence that innate 
and adaptive anti-tumour immune responses are triggered 
by RT, and RT-induced immunogenic cell death (ICD) is 
particularly dominant at large fraction sizes (87). Moreover, 
the synergism that is observed with combining RT and 
immune checkpoint inhibitors [anti-programmed cell 
death-1 (PD1) and ligand-1 (PDL-1)], anti-cytotoxic T 
lymphocyte-associated protein-4 (CTLA4) supports ICD 
as a main mechanism of SBRT and SRS anti-tumour 

efficacy (88). ICD can be exerted through an acute 
release of tumour-associated antigens release leading to 
priming of cytotoxic T-cells, and recruitment of antigen 
presenting cells (APC) and dendritic cells (89). Therefore, 
profiling of tumour mutational burden and the immune 
microenvironment ought to be performed in ongoing trials 
of combination immuno-RT, in order to derive potential 
predictive signatures. The above outlined concepts are 
illustrated in Figure 2. 

Conclusions

In the past decade, the radiation oncology community has 
embraced the technological advances that have transitioned 
the field into an era of precision RT, which have not 
only contributed to tremendous gains in tumour control 
probability and reduction of normal tissue toxicities, but in 
the same vein, catered for novel tumour ablative treatments. 
Consequently, we have witnessed some practice-changing 
transitions in cancer management; examples include the 
safe delivery of prostate RT in five fractions over two weeks 
as opposed to two months of conventionally fractionated 
RT, and the ablation of oligometastasis resulting in curing 
of patients with disseminated disease. These are landmark 
improvements in patient survivorship and quality of life. 
That said, we argue that the next wave of therapeutic 
gains will come from biological precision strategies. Here, 

Figure 2 Optimising outcomes in patients with systemic metastases for cure through combinatorial molecular profiling and ablative RT. 
CTC, circulating tumour cell; cfDNA, cell free DNA; PD1, programmed death 1; PDL1, programmed death-ligand 1; IFN, interferon; RT, 
radiotherapy.
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we presented data on our current understanding into the 
molecular drivers of carcinogenesis, tumour aggression, and 
treatment resistance in HNSCC and prostate cancer. We 
reported on how some of these molecular indices have the 
potential utility in patient prognostication and influencing 
treatment recommendation. As we deepen our scientific 
understanding, it is only imaginable that individualised 
prescription of RT doses and combination regimes will 
become a reality in due course. 
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